Сколько в одном дециметре метров. Единица площади - квадратный дециметр
Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева
1 метр [м] = 10 дециметр [дм]
Исходная величина
Преобразованная величина
метр эксаметр петаметр тераметр гигаметр мегаметр километр гектометр декаметр дециметр сантиметр миллиметр микрометр микрон нанометр пикометр фемтометр аттометр мегапарсек килопарсек парсек световой год астрономическая единица лига морская лига (брит.) морская лига (международная) лига (статутная) миля морская миля (брит.) морская миля (международная) миля (статутная) миля (США, геодезическая) миля (римская) 1000 ярдов фарлонг фарлонг (США, геодезический) чейн чейн (США, геодезический) rope (англ. rope) род род (США, геодезический) перч поль (англ. pole) морская сажень, фатом сажень (США, геодезическая) локоть ярд фут фут (США, геодезический) линк линк (США, геодезический) локоть (брит.) хенд пядь фингер нейль дюйм дюйм (США, геодезический) ячменное зерно (англ. barleycorn) тысячная микродюйм ангстрем атомная единица длины икс-единица ферми арпан пайка типографский пункт твип локоть (шведский) морская сажень (шведская) калибр сантидюйм кен аршин actus (Др. Рим.) vara de tarea vara conuquera vara castellana локоть (греческий) long reed reed длинный локоть ладонь «палец» планковская длина классический радиус электрона боровский радиус экваториальный радиус Земли полярный радиус Земли расстояние от Земли до Солнца радиус Солнца световая наносекунда световая микросекунда световая миллисекунда световая секунда световой час световые сутки световая неделя Миллиард световых лет Расстояние от Земли до Луны кабельтов (международный) кабельтов (британский) кабельтов (США) морская миля (США) световая минута стоечный юнит горизонтальный шаг цицеро пиксель линия дюйм (русский) вершок пядь фут сажень косая сажень верста межевая верста
Конвертер футов и дюймов в метры и обратно
фут дюйм
м
Наука приготовления кофе: давление
Подробнее о длине и расстоянии
Общие сведения
Длина - это наибольшее измерение тела. В трехмерном пространстве длина обычно измеряется горизонтально.
Расстояние - это величина, определяющая насколько два тела удалены друг от друга.
Измерение расстояния и длины
Единицы расстояния и длины
В системе СИ длина измеряется в метрах. Производные величины, такие как километр (1000 метров) и сантиметр (1/100 метра), также широко используются в метрической системе. В странах, где не пользуются метрической системой, например в США и Великобритании, используют такие единицы как дюймы, футы и мили.
Расстояние в физике и биологии
В биологии и физике часто измеряют длину намного менее одного миллиметра. Для этого принята специальная величина, микроме́тр. Один микроме́тр равен 1×10⁻⁶ метра. В биологии в микрометрах измеряют величину микроорганизмов и клеток, а в физике - длину инфракрасного электромагнитного излучения. Микроме́тр также называют микроном и иногда, особенно в англоязычной литературе, обозначают греческой буквой µ. Широко используются и другие производные метра: нанометры (1×10⁻⁹ метра), пикометры (1×10⁻¹² метра), фемтометры (1×10⁻¹⁵ метра и аттометры (1×10⁻¹⁸ метра).
Расстояние в навигации
В судоходстве используют морские мили. Одна морская миля равна 1852 метрам. Первоначально она измерялась как дуга в одну минуту по меридиану, то есть 1/(60×180) меридиана. Это облегчало вычисления широты, так как 60 морских миль равнялись одному градусу широты. Когда расстояние измеряется в морских милях, скорость часто измеряют в морских узлах. Один морской узел равен скорости движения в одну морскую милю в час.
Расстояние в астрономии
В астрономии измеряют большие расстояния, поэтому для облегчения вычислений приняты специальные величины.
Астрономическая единица (а. е., au) равна 149 597 870 700 метрам. Величина одной астрономической единицы - константа, то есть, постоянная величина. Принято считать, что Земля находится от Солнца на расстоянии одной астрономической единицы.
Световой год равен 10 000 000 000 000 или 10¹³ километрам. Это расстояние, которое проходит свет в вакууме за один Юлианский год. Эта величина используется в научно-популярной литературе чаще, чем в физике и астрономии.
Парсек приблизительно равен 30 856 775 814 671 900 метрам или примерно 3,09 × 10¹³ километрам. Один парсек - это расстояние от Солнца до другого астрономического объекта, например планеты, звезды, луны, или астероида, с углом в одну угловую секунду. Одна угловая секунда - 1/3600 градуса, или примерно 4,8481368 мкрад в радианах. Парсек можно вычислить используя параллакс - эффект видимого изменения положения тела, в зависимости от точки наблюдения. При измерениях прокладывают отрезок E1A2 (на иллюстрации) от Земли (точка E1) до звезды или другого астрономического объекта (точка A2). Шесть месяцев спустя, когда Солнце находится на другой стороне Земли, прокладывают новый отрезок E2A1 от нового положения Земли (точка E2) до нового положения в пространстве того же самого астрономического объекта (точка A1). При этом Солнце будет находиться на пересечении этих двух отрезков, в точке S. Длина каждого из отрезков E1S и E2S равна одной астрономической единице. Если отложить отрезок через точку S, перпендикулярный E1E2, он пройдет через точку пересечения отрезков E1A2 и E2A1, I. Расстояние от Солнца до точки I - отрезок SI, он равен одному парсеку, когда угол между отрезками A1I и A2I - две угловые секунды.
На рисунке:
- A1, A2: видимое положение звезды
- E1, E2: положение Земли
- S: положение Солнца
- I: точка пересечения
- IS = 1 парсек
- ∠P or ∠XIA2: угол параллакса
- ∠P = 1 угловая секунда
Другие единицы
Лига - устаревшая единица длины, использовавшаяся раньше во многих странах. В некоторых местах ее до сих пор применяют, например, на полуострове Юкатан и в сельских районах Мексики. Это расстояние, которое человек проходит за час. Морская лига - три морских мили, примерно 5,6 километра. Лье - единица примерно равная лиге. В английском языке и лье, и лиги называются одинаково, league. В литературе лье иногда встречается в названии книг, как например «20 000 лье под водой» - известный роман Жюля Верна.
Локоть - старинная величина, равная расстоянию от кончика среднего пальца до локтя. Эта величина была широко распространена в античном мире, в средневековье, и до нового времени.
Ярд используется в британской имперской системе мер и равен трем футам или 0,9144 метра. В некоторых странах, например в Канаде, где принята метрическая система, ярды используют для измерения ткани и длины бассейнов и спортивных полей и площадок, например, полей для гольфа и футбола.
Определение метра
Определение метра несколько раз менялось. Изначально метр определяли как 1/10 000 000 расстояния от Северного полюса до экватора. Позже метр равнялся длине платиноиридиевого эталона. Позднее метр приравнивали к длине волны оранжевой линии электромагнитного спектра атома криптона ⁸⁶Kr в вакууме, умноженной на 1 650 763,73. Сегодня метр определяют как расстояние, пройденное светом в вакууме за 1/299 792 458 секунды.
Вычисления
В геометрии расстояние между двумя точками, А и В, с координатами A(x₁, y₁) и B(x₂, y₂) вычисляют по формуле:
и в течение нескольких минут вы получите ответ.Расчеты для перевода единиц в конвертере «Конвертер длины и расстояния » выполняются с помощью функций unitconversion.org .
Сегодня мы разберем, какие единицы длины используются при измерениях.
Сантиметр и миллиметр
Но сначала рассмотрим основной инструмент, которым пользуются школьники – линейку .
Посмотрите на рисунок. Минимальная цена деления линейки – миллиметр . Обозначается: мм. Большими делениями обозначен сантиметр. В одном сантиметре 10 миллиметров.
Сантиметр разделен пополам, по пять миллиметров, делением поменьше. Сантиметр обозначают как: см.
Для измерения отрезка линейку приставляют нулевым делением к началу измеряемого отрезка, как показано на рисунке. Деление, на котором заканчивается отрезок и есть длина этого отрезка. Длина отрезка на рисунке 5 см или 50 мм.
На следующем рисунке показан отрезок длиной 5 см 6 мм, или 56 мм.
Давайте рассмотрим несколько примеров перевода разных единиц длины:
Например, нам надо перевести 1 м 30 см в сантиметры. Мы знаем, что в 1 метре – 100 сантиметров . Получается:
100см + 30см = 130 см
Для обратного перевода отделяем сотню сантиметров – это 1м и остается еще 30 см. Ответ: 1м 30см.
Если мы хотим выразить сантиметры в миллиметрах, вспоминаем, что в 1 сантиметре – 10 миллиметров .
Например, переведем 28 см в миллиметры: 28 × 10 = 280
Значит в 28 см – 280 мм.
Метр
Основной единицей длины является метр . Остальные единицы измерения образованы от метра с помощью латинских приставок. Например, в слове сантиметр латинская приставка санти означает сто, значит в одном метре сто сантиметров. В слове миллиметр – приставка милли – тысяча, это значит, что в одном метре тысяча миллиметров.
Десять сантиметров – это 1 дециметр . Обозначается: дм. В 1 метре – 10 дециметров
Выразим в сантиметрах:
1 дм = 10 см
4 дм = 40 см
3 дм 4 см = 30 см + 4 см = 34 см
1 м 2 дм 5 см = 100 см + 20 см + 5 см = 125 см
А теперь выразим в дециметрах:
1 м = 10 дм
4 м 8 дм = 48 дм
20 см = 2 дм
Столько разных видов измерений и как же сравнить длину разных отрезков, если первый отрезок длиной в 5 см 10 мм, а второй 10 дм. В нашей проблеме поможет разобраться главное правило сравнения величин:
Чтобы сравнить результаты измерений, нужно выразить их в одинаковых единицах измерений.
Итак, переведем длину наших отрезков в сантиметры:
5 см 10 мм = 51 см
10 дм = 100 см
51 см < 100 см
Значит второй отрезок длиннее первого.
Километр
Длинные расстояния измеряют в километрах. В 1 километре – 1000 метров . Слово километр образовано с помощью греческой приставки кило – 1000.
Выразим километры в метрах:
3 км = 3000 м
23 км = 23000 м
И обратно:
2400 м = 2 км 400 м
7650 м = 7 км 650 м
Итак, сведем все единицы измерений в одну таблицу:
Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева
1 метр [м] = 10 дециметр [дм]
Исходная величина
Преобразованная величина
метр эксаметр петаметр тераметр гигаметр мегаметр километр гектометр декаметр дециметр сантиметр миллиметр микрометр микрон нанометр пикометр фемтометр аттометр мегапарсек килопарсек парсек световой год астрономическая единица лига морская лига (брит.) морская лига (международная) лига (статутная) миля морская миля (брит.) морская миля (международная) миля (статутная) миля (США, геодезическая) миля (римская) 1000 ярдов фарлонг фарлонг (США, геодезический) чейн чейн (США, геодезический) rope (англ. rope) род род (США, геодезический) перч поль (англ. pole) морская сажень, фатом сажень (США, геодезическая) локоть ярд фут фут (США, геодезический) линк линк (США, геодезический) локоть (брит.) хенд пядь фингер нейль дюйм дюйм (США, геодезический) ячменное зерно (англ. barleycorn) тысячная микродюйм ангстрем атомная единица длины икс-единица ферми арпан пайка типографский пункт твип локоть (шведский) морская сажень (шведская) калибр сантидюйм кен аршин actus (Др. Рим.) vara de tarea vara conuquera vara castellana локоть (греческий) long reed reed длинный локоть ладонь «палец» планковская длина классический радиус электрона боровский радиус экваториальный радиус Земли полярный радиус Земли расстояние от Земли до Солнца радиус Солнца световая наносекунда световая микросекунда световая миллисекунда световая секунда световой час световые сутки световая неделя Миллиард световых лет Расстояние от Земли до Луны кабельтов (международный) кабельтов (британский) кабельтов (США) морская миля (США) световая минута стоечный юнит горизонтальный шаг цицеро пиксель линия дюйм (русский) вершок пядь фут сажень косая сажень верста межевая верста
Конвертер футов и дюймов в метры и обратно
фут дюйм
м
Подробнее о длине и расстоянии
Общие сведения
Длина - это наибольшее измерение тела. В трехмерном пространстве длина обычно измеряется горизонтально.
Расстояние - это величина, определяющая насколько два тела удалены друг от друга.
Измерение расстояния и длины
Единицы расстояния и длины
В системе СИ длина измеряется в метрах. Производные величины, такие как километр (1000 метров) и сантиметр (1/100 метра), также широко используются в метрической системе. В странах, где не пользуются метрической системой, например в США и Великобритании, используют такие единицы как дюймы, футы и мили.
Расстояние в физике и биологии
В биологии и физике часто измеряют длину намного менее одного миллиметра. Для этого принята специальная величина, микроме́тр. Один микроме́тр равен 1×10⁻⁶ метра. В биологии в микрометрах измеряют величину микроорганизмов и клеток, а в физике - длину инфракрасного электромагнитного излучения. Микроме́тр также называют микроном и иногда, особенно в англоязычной литературе, обозначают греческой буквой µ. Широко используются и другие производные метра: нанометры (1×10⁻⁹ метра), пикометры (1×10⁻¹² метра), фемтометры (1×10⁻¹⁵ метра и аттометры (1×10⁻¹⁸ метра).
Расстояние в навигации
В судоходстве используют морские мили. Одна морская миля равна 1852 метрам. Первоначально она измерялась как дуга в одну минуту по меридиану, то есть 1/(60×180) меридиана. Это облегчало вычисления широты, так как 60 морских миль равнялись одному градусу широты. Когда расстояние измеряется в морских милях, скорость часто измеряют в морских узлах. Один морской узел равен скорости движения в одну морскую милю в час.
Расстояние в астрономии
В астрономии измеряют большие расстояния, поэтому для облегчения вычислений приняты специальные величины.
Астрономическая единица (а. е., au) равна 149 597 870 700 метрам. Величина одной астрономической единицы - константа, то есть, постоянная величина. Принято считать, что Земля находится от Солнца на расстоянии одной астрономической единицы.
Световой год равен 10 000 000 000 000 или 10¹³ километрам. Это расстояние, которое проходит свет в вакууме за один Юлианский год. Эта величина используется в научно-популярной литературе чаще, чем в физике и астрономии.
Парсек приблизительно равен 30 856 775 814 671 900 метрам или примерно 3,09 × 10¹³ километрам. Один парсек - это расстояние от Солнца до другого астрономического объекта, например планеты, звезды, луны, или астероида, с углом в одну угловую секунду. Одна угловая секунда - 1/3600 градуса, или примерно 4,8481368 мкрад в радианах. Парсек можно вычислить используя параллакс - эффект видимого изменения положения тела, в зависимости от точки наблюдения. При измерениях прокладывают отрезок E1A2 (на иллюстрации) от Земли (точка E1) до звезды или другого астрономического объекта (точка A2). Шесть месяцев спустя, когда Солнце находится на другой стороне Земли, прокладывают новый отрезок E2A1 от нового положения Земли (точка E2) до нового положения в пространстве того же самого астрономического объекта (точка A1). При этом Солнце будет находиться на пересечении этих двух отрезков, в точке S. Длина каждого из отрезков E1S и E2S равна одной астрономической единице. Если отложить отрезок через точку S, перпендикулярный E1E2, он пройдет через точку пересечения отрезков E1A2 и E2A1, I. Расстояние от Солнца до точки I - отрезок SI, он равен одному парсеку, когда угол между отрезками A1I и A2I - две угловые секунды.
На рисунке:
- A1, A2: видимое положение звезды
- E1, E2: положение Земли
- S: положение Солнца
- I: точка пересечения
- IS = 1 парсек
- ∠P or ∠XIA2: угол параллакса
- ∠P = 1 угловая секунда
Другие единицы
Лига - устаревшая единица длины, использовавшаяся раньше во многих странах. В некоторых местах ее до сих пор применяют, например, на полуострове Юкатан и в сельских районах Мексики. Это расстояние, которое человек проходит за час. Морская лига - три морских мили, примерно 5,6 километра. Лье - единица примерно равная лиге. В английском языке и лье, и лиги называются одинаково, league. В литературе лье иногда встречается в названии книг, как например «20 000 лье под водой» - известный роман Жюля Верна.
Локоть - старинная величина, равная расстоянию от кончика среднего пальца до локтя. Эта величина была широко распространена в античном мире, в средневековье, и до нового времени.
Ярд используется в британской имперской системе мер и равен трем футам или 0,9144 метра. В некоторых странах, например в Канаде, где принята метрическая система, ярды используют для измерения ткани и длины бассейнов и спортивных полей и площадок, например, полей для гольфа и футбола.
Определение метра
Определение метра несколько раз менялось. Изначально метр определяли как 1/10 000 000 расстояния от Северного полюса до экватора. Позже метр равнялся длине платиноиридиевого эталона. Позднее метр приравнивали к длине волны оранжевой линии электромагнитного спектра атома криптона ⁸⁶Kr в вакууме, умноженной на 1 650 763,73. Сегодня метр определяют как расстояние, пройденное светом в вакууме за 1/299 792 458 секунды.
Вычисления
В геометрии расстояние между двумя точками, А и В, с координатами A(x₁, y₁) и B(x₂, y₂) вычисляют по формуле:
и в течение нескольких минут вы получите ответ.Расчеты для перевода единиц в конвертере «Конвертер длины и расстояния » выполняются с помощью функций unitconversion.org .
Если говорить просто, то это овощи, приготовленные в воде по специальному рецепту. Я буду рассматривать два исходных компонента (овощной салат и воду) и готовый результат - борщ. Геометрически это можно представить как прямоугольник, в котором одна сторона обозначает салат, вторая сторона обозначает воду. Сумма этих двух сторон будет обозначать борщ. Диагональ и площадь такого "борщевого" прямоугольника являются чисто математическими понятиями и никогда не используются в рецептах приготовления борща.
Как салат и вода превращаются в борщ с точки зрения математики? Как сумма двух отрезков может превратиться в тригонометрию? Чтобы понять это, нам понадобятся линейные угловые функции.
В учебниках математики вы ничего не найдете о линейных угловых функциях. А ведь без них не может быть математики. Законы математики, как и законы природы, работают независимо от того, знаем мы о их существовании или нет.
Линейные угловые функции - это законы сложения. Посмотрите, как алгебра превращается в геометрию, а геометрия превращается в тригонометрию.
Можно ли обойтись без линейных угловых функций? Можно, ведь математики до сих пор без них обходятся. Хитрость математиков заключается в том, что они всегда рассказывают нам только о тех задачах, которые они сами умеют решать, и никогда не рассказывают о тех задачах, которые они решать не умеют. Смотрите. Если нам известен результат сложения и одно слагаемое, для поиска другого слагаемого мы используем вычитание. Всё. Других задач мы не знаем и решать не умеем. Что делать в том случае, если нам известен только результат сложения и не известны оба слагаемые? В этом случае результат сложения нужно разложить на два слагаемых при помощи линейных угловых функций. Дальше мы уже сами выбираем, каким может быть одно слагаемое, а линейные угловые функции показывают, каким должно быть второе слагаемое, чтобы результат сложения был именно таким, какой нам нужен. Таких пар слагаемых может быть бесконечное множество. В повседневной жизни мы прекрасно обходимся без разложения суммы, нам достаточно вычитания. А вот при научных исследованиях законов природы разложение суммы на слагаемые очень может пригодиться.
Ещё один закон сложения, о котором математики не любят говорить (ещё одна их хитрость), требует, чтобы слагаемые имели одинаковые единицы измерения. Для салата, воды и борща это могут быть единицы измерения веса, объема, стоимости или единицы измерения.
На рисунке показаны два уровня различий для математических . Первый уровень - это различия в области чисел, которые обозначены a , b , c . Это то, чем занимаются математики. Второй уровень - это различия в области единиц измерения, которые показаны в квадратных скобках и обозначены буквой U . Этим занимаются физики. Мы же можем понимать третий уровень - различия в области описываемых объектов. Разные объекты могут иметь одинаковое количество одинаковых единиц измерения. Насколько это важно, мы можем увидеть на примере тригонометрии борща. Если мы добавим нижние индексы к одинаковому обозначению единиц измерения разных объектов, мы сможем точно говорить, какая математическая величина описывает конкретный объект и как она изменяется с течением времени или в связи с нашими действиями. Буквой W я обозначу воду, буквой S обозначу салат и буквой B - борщ. Вот как будут выглядеть линейные угловые функции для борща.
Если мы возьмем какую-то часть воды и какую-то часть салата, вместе они превратятся в одну порцию борща. Здесь я предлагаю вам немного отвлечься от борща и вспомнить далекое детство. Помните, как нас учили складывать вместе зайчиков и уточек? Нужно было найти, сколько всего зверушек получится. Что же нас тогда учили делать? Нас учили отрывать единицы измерения от чисел и складывать числа. Да, одно любое число можно сложить с другим любым числом. Это прямой путь к аутизму современной математики - мы делаем непонятно что, непонятно зачем и очень плохо понимаем, как это относится к реальности, ведь из трех уровней различия математики оперируют только одним. Более правильно будет научиться переходить от одних единиц измерения к другим.
И зайчиков, и уточек, и зверушек можно посчитать в штуках. Одна общая единица измерения для разных объектов позволяет нам сложить их вместе. Это детский вариант задачи. Давайте посмотрим на похожую задачу для взрослых. Что получится, если сложить зайчиков и деньги? Здесь можно предложить два варианта решения.
Первый вариант . Определяем рыночную стоимость зайчиков и складываем её с имеющейся денежной суммой. Мы получили общую стоимость нашего богатства в денежном эквиваленте.
Второй вариант . Можно количество зайчиков сложить с количеством имеющихся у нас денежных купюр. Мы получим количество движимого имущества в штуках.
Как видите, один и тот же закон сложения позволяет получить разные результаты. Всё зависит от того, что именно мы хотим знать.
Но вернемся к нашему борщу. Теперь мы можем посмотреть, что будет происходить при разных значениях угла линейных угловых функций.
Угол равен нулю. У нас есть салат, но нет воды. Мы не можем приготовить борщ. Количество борща также равно нулю. Это совсем не значит, что ноль борща равен нулю воды. Ноль борща может быть и при нуле салата (прямой угол).
Лично для меня, это основное математическое доказательство того факта, что . Ноль не изменяет число при сложении. Это происходит потому, что само сложение невозможно, если есть только одно слагаемое и отсутствует второе слагаемое. Вы к этому можете относиться как угодно, но помните - все математические операции с нулем придумали сами математики, поэтому отбрасывайте свою логику и тупо зубрите определения, придуманные математиками: "деление на ноль невозможно", "любое число, умноженное на ноль, равняется нулю", "за выколом точки ноль" и прочий бред. Достаточно один раз запомнить, что ноль не является числом, и у вас уже никогда не возникнет вопрос, является ноль натуральным числом или нет, потому что такой вопрос вообще лишается всякого смысла: как можно считать числом то, что числом не является. Это всё равно, что спрашивать, к какому цвету отнести невидимый цвет. Прибавлять ноль к числу - это то же самое, что красить краской, которой нет. Сухой кисточкой помахали и говорим всем, что " мы покрасили". Но я немного отвлекся.
Угол больше нуля, но меньше сорока пяти градусов. У нас много салата, но мало воды. В результате мы получим густой борщ.
Угол равен сорок пять градусов. Мы имеем в равных количествах воду и салат. Это идеальный борщ (да простят меня повара, это просто математика).
Угол больше сорока пяти градусов, но меньше девяноста градусов. У нас много воды и мало салата. Получится жидкий борщ.
Прямой угол. У нас есть вода. От салата остались только воспоминания, поскольку угол мы продолжаем измерять от линии, которая когда-то обозначала салат. Мы не можем приготовить борщ. Количество борща равно нулю. В таком случае, держитесь и пейте воду, пока она есть)))
Вот. Как-то так. Я могу здесь рассказать и другие истории, которые будут здесь более чем уместны.
Два друга имели свои доли в общем бизнесе. После убийства одного из них, всё досталось другому.
Появление математики на нашей планете.
Все эти истории на языке математики рассказаны при помощи линейных угловых функций. Как-нибудь в другой раз я покажу вам реальное место этих функций в структуре математики. А пока, вернемся к тригонометрии борща и рассмотрим проекции.
суббота, 26 октября 2019 г.
среда, 7 августа 2019 г.
Завершая разговор о , нужно рассмотреть бесконечное множество. Дало в том, что понятие "бесконечность" действует на математиков, как удав на кролика. Трепетный ужас перед бесконечностью лишает математиков здравого смысла. Вот пример:
Первоисточник находится . Альфа обозначает действительное число. Знак равенства в приведенных выражениях свидетельствует о том, что если к бесконечности прибавить число или бесконечность, ничего не изменится, в результате получится такая же бесконечность. Если в качестве примера взять бесконечное множество натуральных чисел, то рассмотренные примеры можно представить в таком виде:
Для наглядного доказательства своей правоты математики придумали много разных методов . Лично я смотрю на все эти методы, как на пляски шаманов с бубнами. По существу, все они сводятся к тому, что либо часть номеров не занята и в них заселяются новые гости, либо к тому, что часть посетителей вышвыривают в коридор, чтобы освободить место для гостей (очень даже по-человечески). Свой взгляд на подобные решения я изложил в форме фантастического рассказа о Блондинке. На чем основываются мои рассуждения? Переселение бесконечного количества посетителей требует бесконечно много времени. После того, как мы освободили первую комнату для гостя, один из посетителей всегда будет идти по коридору из своего номера в соседний до скончания века. Конечно, фактор времени можно тупо игнорировать, но это уже будет из разряда "дуракам закон не писан". Всё зависит от того, чем мы занимаемся: подгоняем реальность под математические теории или наоборот.
Что же такое "бесконечная гостиница"? Бесконечная гостиница - это гостиница, в которой всегда есть любое количество свободных мест, независимо от того, сколько номеров занято. Если все номера в бесконечном коридоре "для посетителей" заняты, есть другой бесконечный коридор с номерами "для гостей". Таких коридоров будет бесконечное множество. При этом у "бесконечной гостиницы" бесконечное количество этажей в бесконечном количестве корпусов на бесконечном количестве планет в бесконечном количестве вселенных, созданных бесконечным количеством Богов. Математики же не способны отстраниться от банальных бытовых проблем: Бог-Аллах-Будда - всегда только один, гостиница - она одна, коридор - только один. Вот математики и пытаются подтасовывать порядковые номера гостиничных номеров, убеждая нас в том, что можно "впихнуть невпихуемое".
Логику своих рассуждений я вам продемонстрирую на примере бесконечного множества натуральных чисел. Для начала нужно ответить на очень простой вопрос: сколько множеств натуральных чисел существует - одно или много? Правильного ответа на это вопрос не существует, поскольку числа придумали мы сами, в Природе чисел не существует. Да, Природа отлично умеет считать, но для этого она использует другие математические инструменты, не привычные для нас. Как Природа считает, я вам расскажу в другой раз. Поскольку числа придумали мы, то мы сами будем решать, сколько множеств натуральных чисел существует. Рассмотрим оба варианта, как и подобает настоящим ученым.
Вариант первый. "Пусть нам дано" одно-единственное множество натуральных чисел, которое безмятежно лежит на полочке. Берем с полочки это множество. Всё, других натуральных чисел на полочке не осталось и взять их негде. Мы не можем к этому множеству прибавить единицу, поскольку она у нас уже есть. А если очень хочется? Без проблем. Мы можем взять единицу из уже взятого нами множества и вернуть её на полочку. После этого мы можем взять с полочки единицу и прибавить её к тому, что у нас осталось. В результате мы снова получим бесконечное множество натуральных чисел. Записать все наши манипуляции можно так:
Я записал действия в алгебраической системе обозначений и в системе обозначений, принятой в теории множеств, с детальным перечислением элементов множества. Нижний индекс указывает на то, что множество натуральных чисел у нас одно и единственное. Получается, что множество натуральных чисел останется неизменным только в том случае, если из него вычесть единицу и прибавить эту же единицу.
Вариант второй. У нас на полочке лежит много разных бесконечных множеств натуральных чисел. Подчеркиваю - РАЗНЫХ, не смотря на то, что они практически не отличимы. Берем одно из этих множеств. Потом из другого множества натуральных чисел берем единицу и прибавляем к уже взятому нами множеству. Мы можем даже сложить два множества натуральных чисел. Вот что у нас получится:
Нижние индексы "один" и "два" указывают на то, что эти элементы принадлежали разным множествам. Да, если к бесконечному множеству прибавить единицу, в результате получится тоже бесконечное множество, но оно не будет таким же, как первоначальное множество. Если к одному бесконечному множеству прибавить другое бесконечное множество, в результате получится новое бесконечное множество, состоящее из элементов первых двух множеств.
Множество натуральных чисел используется для счета так же, как линейка для измерений. Теперь представьте, что к линейке вы добавили один сантиметр. Это уже будет другая линейка, не равная первоначальной.
Вы можете принимать или не принимать мои рассуждения - это ваше личное дело. Но если когда-то вы столкнетесь с математическими проблемами, задумайтесь, не идете ли вы по тропе ложных рассуждений, протоптанной поколениями математиков. Ведь занятия математикой, прежде всего, формируют у нас устойчивый стереотип мышления, а уже потом добавляют нам умственных способностей (или наоборот, лишают нас свободомыслия).
pozg.ru
воскресенье, 4 августа 2019 г.
Дописывал постскриптум к статье о и увидел в Википедии этот замечательный текст:
Читаем: "... богатая теоретическая основа математики Вавилона не имела целостного характера и сводилась к набору разрозненных приемов, лишенных общей системы и доказательной базы."
Вау! Какие мы умные и как хорошо можем видеть недостатки других. А слабо нам посмотреть на современную математику в таком же разрезе? Слегка перефразируя приведенный текст, лично у меня получилось следующее:
Богатая теоретическая основа современной математики не имеет целостного характера и сводится к набору разрозненных разделов, лишенных общей системы и доказательной базы.
За подтверждением своих слов я далеко ходить не буду - имеет язык и условные обозначения, отличные от языка и условных обозначений многих других разделов математики. Одни и те же названия в разных разделах математики могут иметь разный смысл. Наиболее очевидным ляпам современной математики я хочу посвятить целый цикл публикаций. До скорой встречи.
суббота, 3 августа 2019 г.
Как разделить множество на подмножества? Для этого необходимо ввести новую единицу измерения, присутствующую у части элементов выбранного множества. Рассмотрим пример.
Пусть у нас есть множество А , состоящее из четырех человек. Сформировано это множество по признаку "люди" Обозначим элементы этого множества через букву а , нижний индекс с цифрой будет указывать на порядковый номер каждого человека в этом множестве. Введем новую единицу измерения "половой признак" и обозначим её буквой b . Поскольку половые признаки присущи всем людям, умножаем каждый элемент множества А на половой признак b . Обратите внимание, что теперь наше множество "люди" превратилось в множество "люди с половыми признаками". После этого мы можем разделить половые признаки на мужские bm и женские bw половые признаки. Вот теперь мы можем применить математический фильтр: выбираем один из этих половых признаков, безразлично какой - мужской или женский. Если он присутствует у человека, тогда умножаем его на единицу, если такого признака нет - умножаем его на ноль. А дальше применяем обычную школьную математику. Смотрите, что получилось.
После умножения, сокращений и перегруппировок, мы получили два подмножества: подмножество мужчин Bm и подмножество женщин Bw . Приблизительно так же рассуждают математики, когда применяют теорию множеств на практике. Но в детали они нас не посвящают, а выдают готовый результат - "множество людей состоит из подмножества мужчин и подмножества женщин". Естественно, у вас может возникнуть вопрос, насколько правильно применена математика в изложенных выше преобразованиях? Смею вас заверить, по сути преобразований сделано всё правильно, достаточно знать математическое обоснование арифметики, булевой алгебры и других разделов математики. Что это такое? Как-нибудь в другой раз я вам об этом расскажу.
Что касается надмножеств, то объединить два множества в одно надмножество можно, подобрав единицу измерения, присутствующую у элементов этих двух множеств.
Как видите, единицы измерения и обычная математика превращают теорию множеств в пережиток прошлого. Признаком того, что с теорией множеств не всё в порядке, является то, что для теории множеств математики придумали собственный язык и собственные обозначения. Математики поступили так, как когда-то поступали шаманы. Только шаманы знают, как "правильно" применять их "знания". Этим "знаниям" они обучают нас.
В заключение, я хочу показать вам, как математики манипулируют с .
понедельник, 7 января 2019 г.
В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:
Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.
Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.
С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.
Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".
Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:
За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.
Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.
Другая интересная апория Зенона повествует о летящей стреле:
Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.
В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.
Покажу процесс на примере. Отбираем "красное твердое в пупырышку" - это наше "целое". При этом мы видим, что эти штучки есть с бантиком, а есть без бантика. После этого мы отбираем часть "целого" и формируем множество "с бантиком". Вот так шаманы добывают себе корм, привязывая свою теорию множеств к реальности.
А теперь сделаем маленькую пакость. Возьмем "твердое в пупырышку с бантиком" и объединим эти "целые" по цветовому признаку, отобрав красные элементы. Мы получили множество "красное". Теперь вопрос на засыпку: полученные множества "с бантиком" и "красное" - это одно и то же множество или два разных множества? Ответ знают только шаманы. Точнее, сами они ничего не знают, но как скажут, так и будет.
Этот простой пример показывает, что теория множеств совершенно бесполезна, когда речь заходит о реальности. В чем секрет? Мы сформировали множество "красное твердое в пупырышку с бантиком". Формирование происходило по четырем разным единицам измерения: цвет (красное), прочность (твердое), шероховатость (в пупырышку), украшения (с бантиком). Только совокупность единиц измерения позволяет адекватно описывать реальные объекты на языке математики . Вот как это выглядит.
Буква "а" с разными индексами обозначает разные единицы измерения. В скобках выделены единицы измерения, по которым выделяется "целое" на предварительном этапе. За скобки вынесена единица измерения, по которой формируется множество. Последняя строчка показывает окончательный результат - элемент множества. Как видите, если применять единицы измерения для формирования множества, тогда результат не зависит от порядка наших действий. А это уже математика, а не пляски шаманов с бубнами. Шаманы могут "интуитивно" придти к такому же результату, аргументируя его "очевидностью", ведь единицы измерения не входят в их "научный" арсенал.
При помощи единиц измерения очень легко разбить одно или объединить несколько множеств в одно надмножество. Давайте более внимательно рассмотрим алгебру этого процесса.
Как перевести метры в дециметры?
Сколько дециметров в одном метре?
Следовательно, чтобы перевести метры в дециметры, надо количество метров умножить на 10:
Перевод метров в дециметры рассмотрим на конкретных примерах.
Выразить метры в дециметрах:
1) 4 метра;
2) 12 метров;
3) 30 метров;
4) 5,2 метра;
5) 25 метров 7 дециметров.
Для сокращения записи приняты следующие обозначения:
1 метр = 1 м;
1 дециметр = 1 дм.
Чтобы перевести метры в дециметры, количество метров умножаем на 10:
1) 4 м=4∙10 дм=40 дм;
2) 12 м=12∙10 дм=120 дм;
3) 30 м=30∙10 дм=300 дм;
4) 5,2 м=5,2∙10 дм=52 дм;
5) 25 м 7 дм=25∙10 +7 дм=257 дм.
Светлана МихайловнаЕдиницы измерения
Чтобы узнать, сколько дециметров метров должно использовать простой веб-калькулятор. В левом поле введите количество счетчиков, которые вы хотите конвертировать для преобразования.
В поле справа вы увидите результат расчета.
Чтобы преобразовать счетчики или дециметры в другие единицы измерения, просто нажмите соответствующую ссылку.
Что такое «метр»
Метр (м, м) — один из семи базовых единиц международной системы (СИ), который также включен в МКС МСКА, МКСК, схемы компенсации инвестора, МСК, МКСИ, МЦК и МТС. Счетчик — это расстояние, пройденное светом в вакууме на 1/299 792 458 секунд.
Определение, принятое в 1983 году Генеральной конференцией по весам и мерам, означает, что термин «метр» связан со второй с помощью универсальной постоянной (скорость света).
Долгое время в Европе не было стандартных мер для определения длины.
В 17 веке возникла настоятельная необходимость объединения. Century. С развитием науки поиск меры, основанной на естественном явлении, начал позволять вычислять десятичную систему. Затем был принят «католический метр» итальянского ученого Тито Ливио Бураттини.
В 1960 году, От контрольного мужчины и опустился до 1983 г. Манометр был на 1650 763,73 длины волны оранжевой линии (6056 нм) в криптонном диапазоне изотопного 86Kr в вакууме.
В настоящее время этот прототип не полезен. С середины 1970-х годов, когда скорость света стала настолько точной, насколько это было возможно, было решено, что существующая концепция метра, связанная со скоростью света в вакууме.
Что такое «дециметр»?
Единица измерения расстояния в Международной системе единиц (СИ) Один дециметр равен десятому метру.
Российская марка — дм, международный — дм. В дециметре 10 сантиметров и 100 миллиметров.
Сколько это в дециметрах
Вес единиц | ||||
1 t = | 10 центров | 1000 кг | 1000 000 г | 1000 000 000 мг |
1 c = | 100 кг | 100 000 г | 100 000 000 мг | |
1 кг = | 1000г | 1000 мг | ||
1 г = | 1000 мг |
1 метр это сколько дм??
ПРОЕКТИРОВАНИЕ ВОДОСНАБЖЕНИЯ И КАНАЛИЗАЦИИ
Пишите: [email protected]
Режим работы: Пн-Пт с 9-00 до 18-00 (без обеда)
Сколько в 1 метре дециметров (в 1 м сколько дм)?
Согласно международной системе мер и весов в 1 метре 10 дециметров .
Онлайн калькулятор для перевода метров в дециметры.
Перевод единиц измерения длины, массы, времени, информации и их производных является достаточно простой задачей.
Для этих целей инженерами нашей компании были разработаны универсальные калькуляторы взаимного перевода различных единиц измерения между собой.
Универсальные калькуляторы единиц измерения:
— калькулятор единиц длины
— калькулятор единиц массы
— калькулятор единиц площади
— калькулятор единиц объема
— калькулятор единиц времени
Теоретические и практические понятия о переводе одной единицы измерения в другую основываются на многовековом опыте научных исследований человечества в прикладных областях знаний.
Теория:
Масса — это характеристика тела, являющеяся мерой гравитационного взаимодействия с другими телами.
Длина — это численная величина протяженности линии (не обязательно прямолинейной) от исходной точки до конечной.
Время — это мера протекания физических процессов последовательного изменения их состояния, на практике протекающая в одном направлении непрерывно.
Информация — это форма сведений в любом представлении (касательно калькуляции преимущественно в цифровом).
Практика:
На этой странице представлен самый простой ответ на вопрос сколько в 1 метре дециметров.
Один метр равен 10 дециметров.