Тепловые потери в системе гвс. Расчет потерей температуры в трубопроводах гвс

УДК 621.64 (083.7)

Разработано: ЗАО Научно-производственный комплекс «Вектор», Московский энергетический институт (Технический университет)

Исполнители: Тищенко А.А., Щербаков А.П.

Под общей редакцией Семенова В.Г.

Утверждено Руководителем Департамента государственного энергетического надзора Министерства энергетики РФ 20 февраля 2004 г.

Методика устанавливает порядок определения фактических потерь тепловой энергии через тепловую изоляцию трубопроводов водяных тепловых сетей систем централизованного теплоснабжения, часть потребителей которых оснащена приборами учета. Фактические потери тепловой энергии для потребителей, имеющих измерительные приборы, определяются на основании показаний теплосчетчиков, а для потребителей, не оснащенных приборами учета, - расчетным путем.

Потери тепловой энергии, определенные по настоящей Методике, должны рассматриваться, как исходная база для составления энергетических характеристик тепловой сети, а также для разработки технических мероприятий по снижению фактических потерь тепловой энергии.

Методика утверждена Руководителем Департамента государственного энергетического надзора Министерства энергетики РФ 20 февраля 2004 г.

Для организаций, осуществляющих энергетическое обследование теплоснабжающих предприятий, а также для предприятий и организаций, эксплуатирующих тепловые сети, независимо от их ведомственной принадлежности и форм собственности.

Настоящая «Методика...» устанавливает порядок определения фактических потерь тепловой энергии 1 через тепловую изоляцию трубопроводов водяных тепловых сетей систем централизованного теплоснабжения, часть потребителей которых оснащена приборами учета. Фактические потери тепловой энергии для потребителей, имеющих измерительные приборы, определяются на основании показаний теплосчетчиков, а для потребителей, неоснащенных приборами учета, - расчетным путем.

1 Термины и определения приведены в приложении А.

В основу «Методики...» положен расчетно-экспериментальный метод оценки потерь тепловой энергии, изложенный в .

«Методика...» предназначена для организаций, осуществляющих энергетическое обследование теплоснабжающих предприятий, а также для предприятий и организаций, эксплуатирующих тепловые сети, независимо от их ведомственной принадлежности и форм собственности.

Потери тепловой энергии, определенные по настоящей «Методике...», должны рассматриваться, как исходная база для составления энергетических характеристик тепловой сети, а также для разработки технических мероприятий по снижению фактических потерь тепловой энергии.

1. ОБЩИЕ ПОЛОЖЕНИЯ

Целью настоящей «Методики...» является определение фактических потерь тепловой энергии через тепловую изоляцию трубопроводов водяных тепловых сетей систем централизованного теплоснабжения без проведения специальных испытаний. Потери тепловой энергии определяются для всей тепловой сети, подключенной к единому источнику тепловой энергии. Определение фактических потерь тепловой энергии по отдельным участкам тепловой сети не проводится.

Определение потерь тепловой энергии по данной «Методике...» предполагает наличие аттестованных узлов учета тепловой энергии на источнике тепловой энергии и у потребителей тепловой энергии. Количество потребителей, оснащенных приборами учета, должно быть не менее 20 % от общего количества потребителей данной тепловой сети.

Приборы учета должны иметь архив с часовой и суточной регистрацией параметров. Глубина часового архива должна составлять не менее 720 часов, суточного - не менее 30 суток.

Основным при проведении расчетов потерь тепловой энергии является часовой архив теплосчетчиков. Суточный архив используется, если часовые данные по каким-либо причинам отсутствуют.

Определение фактических потерь тепловой энергии проводится на основании измерений расхода и температуры сетевой воды в подающем трубопроводе 1 у потребителей, имеющих приборы учета, и температуры сетевой воды на источнике тепловой энергии. Потери тепловой энергии для потребителей, не имеющих измерительных приборов, определяются расчетным путем по настоящей «Методике...».

__________________

1 Условные обозначения величин приведены в приложении Б.

Источниками и потребителями тепловой энергии в настоящей «Методике...» считаются:

1. при отсутствии приборов учета непосредственно в зданиях : источники тепловой энергии - теплоэлектростанции, котельные и т.п.; потребители тепловой энергии - центральный (ДТП) или индивидуальный (ИТП) тепловые пункты;

2. при наличии приборов учета непосредственно в зданиях (помимо п. 1): источники тепловой энергии - центральные (ЦТП) тепловые пункты; потребители тепловой энергии - непосредственно здания.

Для удобства проведения расчетов потерь тепловой энергии через тепловую изоляцию подающий трубопровод в данной «Методике...» разграничивается на: основной трубопровод и ответвление от основного трубопровода.

Основной трубопровод - это часть подающего трубопровода от источника тепловой энергии до тепловой камеры, из которой существует ответвление к потребителю тепловой энергии.

Ответвление от основного трубопровода - это часть подающего трубопровода от соответствующей тепловой камеры до потребителя тепловой энергии.

При определении фактических потерь тепловой энергии используются нормативные значения потерь, определяемые по нормам потерь тепловой энергии для тепловых сетей, тепловая изоляция которых была выполнена по нормам проектирования или (нормы уточняются по проектной и исполнительной документации).

Перед проведением расчетов:

производится сбор исходных данных о тепловой сети;

составляется расчетная схема тепловой сети, на которой указываются условный проход (условный диаметр), длина и тип прокладки трубопроводов для всех участков тепловой сети;

собираются данные по подключенной нагрузке всех потребителей сети;

устанавливаются тип приборов учета, наличие у них часового и суточного архивов.

При отсутствии централизованного сбора данных приборов учета тепловой энергии производится подготовка соответствующих устройств для сбора: адаптера или переносного компьютера. Переносной компьютер должен быть оснащен специальной программой, поставляемой вместе с прибором учета, которая позволяет считывать часовой и суточный архивы с установленных теплосчетчиков.

Для повышения точности определения потерь тепловой энергии предпочтительно осуществлять сбор данных приборов учета за некоторый временной интервал в неотопительный период, когда расход сетевой воды минимальный, предварительно уточнив в теплоснабжающей организации о плановых отключениях подачи тепловой энергии потребителям, чтобы это время исключить из периода сбора данных измерительных приборов.

2. СБОР И ОБРАБОТКА ИСХОДНЫХ ДАННЫХ

2.1. СБОР ИСХОДНЫХ ДАННЫХ ПО ТЕПЛОВОЙ СЕТИ

На основании проектной и исполнительной документации по тепловой сети составляется таблица характеристик всех участков тепловой сети (табл. В.1 приложения В).

Участком тепловой сети считается участок трубопровода, отличающийся от других одним из следующих признаков (которые указываются в табл. В.1 приложения В):

условным проходом трубопровода (условным диаметром трубопровода);

типом прокладки (надземная, подземная канальная, подземная бесканальная);

материалом основного слоя теплоизоляционной конструкции (тепловой изоляцией);

годом прокладки.

Также в табл. В.1 приложения В указываются:

наименование начального и конечного узлов участка;

длина участка.

На основании данных метеослужбы составляется таблица среднемесячных температур наружного воздуха , °С, и грунта , °С, на различных глубинах заложения трубопроводов, усредненных за последние пять лет (табл. Г.1 приложения Г). Среднегодовые температуры наружного воздуха , °С, и грунта , °С, определяются, как среднеарифметические из среднемесячных значений за весь период эксплуатации тепловой сети.

На основании утвержденного температурного графика отпуска тепловой энергии на источнике тепловой энергии определяются среднемесячные температуры сетевой воды в подающем , °С, и обратном , °С, трубопроводах (табл. Г.1 приложения Г). Среднемесячные температуры сетевой воды определяются по среднемесячной температуре наружного воздуха. Среднегодовые температуры сетевой воды в подающем , °С, и обратном , °C, трубопроводах определяются, как среднеарифметические из среднемесячных значений с учетом продолжительности работы сети по месяцам и за год.

На основании данных службы учета теплопотребления теплоснабжающей организации составляется таблица, в которой для каждого потребителя указывается (табл. Д.1 приложения Д):

наименование потребителя тепловой энергии;

тип системы теплоснабжения (открытая или закрытая);

присоединенная средняя нагрузка системы горячего водоснабжения;

наименование (марка) приборов учета;

глубина архивов (суточного и часового);

наличие или отсутствие централизованного сбора данных.

При наличии централизованного сбора данных по результатам измерений выбирается период, за который будут определяться потери тепловой энергии. При этом необходимо учитывать следующее:

для повышения точности определения потерь тепловой энергии желательно выбирать период с минимальным расходом сетевой воды (обычно это неотопительный период);

в выбранный период не должно осуществляться плановых отключений потребителей от тепловой сети;

данные измерений собираются не менее, чем за 30 календарных дней.

При отсутствии централизованного сбора данных необходимо в течение 3-5 дней собрать часовой и суточный архивы приборов учета у потребителей тепловой энергии и на источнике тепловой энергии, используя адаптер или переносной компьютер с установленной программой для считывания данных с соответствующего типа теплосчетчика.

Для определения потерь тепловой энергии необходимо иметь следующие данные:

расход сетевой воды в подающем трубопроводе у потребителей тепловой энергии;

температура сетевой воды в подающем трубопроводе у потребителей тепловой энергии;

расход сетевой воды в подающем трубопроводе на источнике тепловой энергии;

температура сетевой воды в подающем и обратном трубопроводах на источнике тепловой энергии;

расход подпиточной воды на источнике тепловой энергии.

2.2. ОБРАБОТКА ИСХОДНЫХ ДАННЫХ ПРИБОРОВ УЧЕТА

Основная задача обработки данных приборов учета состоит в преобразовании исходных файлов, считываемых непосредственно с теплосчетчиков, в единый формат, позволяющий проводить последующую верификацию (проверку на достоверность) измеренных значений параметров теплопотребления и расчеты.

Для разных типов теплосчетчиков данные считываются в различных форматах и требуют особых процедур обработки. Для одного типа теплосчетчиков у разных потребителей параметры, сохраненные в архиве, могут потребовать использования различных коэффициентов приведения исходных данных к единым физическим величинам. Различие этих коэффициентов определяется диаметром преобразователя расхода и характеристикой импульсных входов вычислителя. Поэтому первоначальная обработка результатов измерений требует индивидуального подхода для каждого файла исходных данных.

Суточные и часовые значения параметров теплоносителя используются для верификации измеренных значений. При проведении этой процедуры основное внимание следует обращать на следующее:

значения температур и расходов теплоносителя не должны выходить за физически обоснованные пределы;

в суточном файле не должно быть резких изменений расхода теплоносителя;

значения среднесуточной температуры теплоносителя в подающем трубопроводе у потребителей не должны превышать среднесуточные значения температуры в подающем трубопроводе на источнике тепловой энергии;

изменение среднесуточной температуры теплоносителя в подающем трубопроводе у потребителей должно соответствовать изменению среднесуточной температуры в подающем трубопроводе на источнике тепловой энергии.

По результатам верификации исходных данных приборов учета составляется таблица, в которой для каждого потребителя тепловой энергии, имеющего приборы учета, и для источника тепловой энергии указывается тот период, когда достоверность исходных данных не вызывает сомнения. На основании этой таблицы выбирается общий период, за который имеются достоверные результаты измерения для всех потребителей и на источнике тепловой энергии (период наличия данных).

Используя часовой файл данных, полученный на источнике тепловой энергии, определяется количество часов в периоде измерений n и, данные за которые будут использоваться для последующей обработки.

Перед определением периода измерений вычисляется время заполнения всех подающих трубопроводов теплоносителем t п, с, по формуле:

где V

Средний за весь период измерений расход теплоносителя по подающему трубопроводу на источнике тепловой энергии, кг/с.

Период измерений должен удовлетворять следующим условиям: средняя температура сетевой воды в подающем трубопроводе на источнике тепловой энергии за время t п, предшествующее началу периода измерений, и средняя температура сетевой воды в подающем трубопроводе на источнике тепловой энергии за время t п в конце периода измерений отличается не более, чем на 5 °С;

период измерений полностью содержится в периоде наличия данных;

период измерений должен быть непрерывным и составлять не менее 240 часов.

Если такой период невозможно выбрать из-за отсутствия данных у одного или нескольких потребителей, то данные приборов учета этих потребителей в дальнейшем расчете не используются.

Количество оставшихся потребителей, у которых имеются данные приборов учета, должно составлять не менее 20 % от общего числа потребителей данной тепловой сети.

Если количество потребителей с приборами учета стало меньше 20 %, необходимо выбрать другой период для сбора данных и проделать процедуру верификации заново.

Для данных, полученных на источнике тепловой энергии, определяется средняя за период измерений температура сетевой воды в подающем трубопроводе , °С, и средняя за период измерений температура сетевой воды в обратном трубопроводе , °С:

где

n и - количество часов в периоде измерений.

Для периода измерений определяются средняя температура грунта на средней глубине заложения оси трубопроводов , °С, и средняя температура наружного воздуха , °С.

3. ОПРЕДЕЛЕНИЕ НОРМАТИВНЫХ ПОТЕРЬ ТЕПЛОВОЙ ЭНЕРГИИ

3.1. ОПРЕДЕЛЕНИЕ СРЕДНЕГОДОВЫХ НОРМАТИВНЫХ ПОТЕРЬ

ТЕПЛОВОЙ ЭНЕРГИИ

Для каждого участка тепловой сети определяются согласно среднегодовые нормативные удельные (на 1 метр длины трубопровода) значения потерь тепловой энергии по нормам проектирования или , в соответствии с которыми выполнена тепловая изоляция трубопроводов тепловых сетей.

Среднегодовые удельные потери тепловой энергии определяются при среднегодовых значениях температур сетевой воды в подающем и обратном трубопроводах и среднегодовых температурах наружного воздуха или грунта.

Значения среднегодовых удельных потерь тепловой энергии при разности среднегодовых температур сетевой воды и окружающей среды, отличающихся от значений, приведенных в нормах, определяются линейной интерполяцией или экстраполяцией.

Для участков тепловых сетей подземной прокладки с тепловой изоляцией, выполненной в соответствии с (табл. Е.1 приложения Е), нормативные удельные потери тепловой энергии определяются суммарно по подающему и обратному трубопроводам q н, Вт/м, по формуле:

где - удельные потери тепловой энергии суммарно по подающему и обратному трубопроводам при меньшем, чем для данной сети, табличном значении разности среднегодовых температур сетевой воды и грунта, Вт/м;

Большее, чем для данной сети, табличное значение разности среднегодовых температур сетевой воды и грунта, °С.

Разность среднегодовых температур сетевой воды и грунта определяется по формуле:

где , - среднегодовая температура сетевой воды в подающем и обратном трубопроводах, соответственно, °С;

Среднегодовая температура грунта на средней глубине заложения оси трубопроводов, °С.

Для распределения удельных потерь тепловой энергии на участках подземной прокладки между подающим и обратным трубопроводами определяются среднегодовые нормативные удельные потери тепловой энергии в обратном трубопроводе q но, Вт/м, которые принимаются равными значениям нормативных удельных потерь в обратном трубопроводе, приведенным в табл. Е.1 приложения Е.

q

q нп = q н - q но. (3.3)

Для участков тепловых сетей подземной прокладки с тепловой изоляцией, выполненной в соответствии с (табл. И.1 приложения И, табл. К.1 приложения К, табл. Н.1 приложения Н), перед определением нормативных удельных потерь тепловой энергии следует дополнительно определить разность среднегодовых температур , °С, для каждой пары значений среднегодовых температур сетевой воды в подающем и обратном трубопроводах и грунта, приведенных в табл. И.1 приложения И, табл. К.1 приложения К и табл. Н.1 приложения Н:

где , - соответственно, табличные значения среднегодовых температур сетевой воды в подающем (65, 90, 110 °С) и обратном (50 °С) трубопроводах, °С;

Нормативное значение среднегодовой температуры грунта, °С (принимается равным 5°С).

Для каждой пары среднегодовых температур сетевой воды в подающем и обратном трубопроводах определяются суммарные нормативные удельные потери тепловой энергии , Вт/м:

где , - соответственно, значения нормативных удельных потерь тепловой энергии для подземной прокладки в подающем и обратном трубопроводах, приведенные в табл. И.1 приложения И, табл. К.1 приложения К и табл. Н.1 приложения Н.

Значения среднегодовых удельных потерь тепловой энергии для рассматриваемой тепловой сети при разности среднегодовых температур сетевой воды и окружающей среды, отличающейся от значений, определенных по формуле 3.4, определяются линейной интерполяцией или экстраполяцией.

Значения суммарных удельных потерь тепловой энергии q н, Вт/м, определяются по формулам 3.1 и 3.2.

Среднегодовые нормативные удельные потери тепловой энергии в подающем трубопроводе q нп, Вт/м, определяются по формуле:

где , - удельные потери тепловой энергии по подающему трубопроводу при двух смежных, соответственно меньшем и большем, чем для данной сети, табличных значениях разности среднегодовых температур сетевой воды и грунта, Вт/м;

Смежные, соответственно меньшее и большее, чем для данной сети, табличные значения разности среднегодовых температур сетевой воды в подающем трубопроводе и грунта, °С.

Среднегодовые значения разности температур сетевой воды и грунта для подающего трубопровода определяются по формуле:

где - среднегодовая температура грунта на средней глубине заложения оси трубопроводов, °С.

Табличные значения разности среднегодовых температур сетевой воды в подающем трубопроводе и грунта определяются по формуле:

Среднегодовые нормативные удельные потери тепловой энергии в обратном трубопроводе q но, Вт/м, определяются по формуле:

q но = q н - q нп. (3.9)

Для всех участков тепловых сетей надземной прокладки с тепловой изоляцией, выполненной в соответствии с , (табл. Ж.1 приложения Ж, табл. Л.1 приложения Л, табл. П.1 приложения П), нормативные удельные потери тепловой энергии определяются раздельно по подающему и обратному трубопроводам, соответственно, q нп и q но, Вт/м, по формулам:

где , - удельные потери тепловой энергии по подающему трубопроводу при двух смежных, соответственно меньшем и большем, чем для данной сети, табличных значениях разности среднегодовых температур сетевой воды и наружного воздуха, Вт/м;

Значение разности среднегодовых температур сетевой воды и наружного воздуха соответственно для подающего и обратного трубопроводов для данной тепловой сети, °С;

Смежные, соответственно меньшее и большее, чем для данной сети, табличные значения разности среднегодовых температур сетевой воды в обратном трубопроводе и наружного воздуха, °С.

Значения разности среднегодовых температур сетевой воды и наружного воздуха для подающего и обратного трубопроводов определяются по формулам:

где - среднегодовая температура наружного воздуха, °С.

Для прокладок в проходных и полупроходных каналах, тоннелях, подвалах удельные потери тепловой энергии участков определяются по соответствующим нормам для прокладок в помещениях (табл. М.1 приложения М, табл. Р.1 приложения Р) при среднегодовых температурах окружающего воздуха: тоннелей и проходных каналов - +40 °С, для подвалов - +20 °С.

Для каждого участка тепловой сети определяются нормативные среднегодовые значения потерь тепловой энергии отдельно для подающего и обратного трубопроводов:

где - среднегодовые нормативные потери тепловой энергии по подающему трубопроводу, Вт;

L

b - коэффициент местных потерь тепловой энергии, учитывающий потери тепловой энергии арматурой, компенсаторами и опорами, принимаемый в соответствии с равным 1,2 при подземной канальной и надземной прокладках для условных проходов трубопроводов до 150 мм и 1,15 для условных проходов 150 мм и более, а также для всех условных проходов при бесканальной прокладке.

3.2. ОПРЕДЕЛЕНИЕ НОРМАТИВНЫХ ПОТЕРЬ ТЕПЛОВОЙ ЭНЕРГИИ

ЗА ПЕРИОД ИЗМЕРЕНИЙ

Для каждого участка тепловой сети определяются нормативные средние за период измерений потери тепловой энергии в подающем , Вт, и обратном , Вт, трубопроводах.

Для участков тепловой сети подземной прокладки

Для участков тепловой сети надземной прокладки нормативные средние за период измерений потери тепловой энергии определяются по формулам:

где , - средняя за период измерений температура сетевой воды в подающем и обратном трубопроводах на источнике тепловой энергии, °С;

Среднегодовая температура сетевой воды в подающем и обратном трубопроводах, соответственно, °С;

Средняя за период измерений температура грунта и наружного воздуха, соответственно, °С;

Среднегодовая температура грунта и наружного воздуха, соответственно, °С.

Для участков, проложенных в проходных и полупроходных каналах, тоннелях, подвалах нормативные средние за период измерений потери тепловой энергии определяются по формулам (3.18) и (3.19) при средней температуре наружного воздуха равной среднегодовой: для тоннелей и проходных каналов - +40 °С, для подвалов - +20 °С.

Для всей сети определяются нормативные средние за период измерений потери тепловой энергии в подающем трубопроводе , Вт:

Определяются нормативные средние за период измерений потери тепловой энергии в подающем трубопроводе для всех участков подземной прокладки , Вт:

Определяются нормативные средние за период измерений потери тепловой энергии в обратном трубопроводе для всех участков подземной прокладки , Вт:

Определяются нормативные средние за период измерений потери тепловой энергии в подающем трубопроводе для всех участков надземной прокладки , Вт:

Определяются нормативные средние за период измерений потери тепловой энергии в обратном трубопроводе для всех участков надземной прокладки , Вт:

Определяются нормативные средние за период измерений потери тепловой энергии в подающем трубопроводе для всех участков, расположенных в проходных и полупроходных каналах, тоннелях , Вт:

Определяются нормативные средние за период измерений потери тепловой энергии в обратном трубопроводе для всех участков, расположенных в проходных и полупроходных каналах, тоннелях , Вт:

Определяются нормативные средние за период измерений потери тепловой энергии в подающем трубопроводе для всех участков, расположенных в подвалах , Вт:

Определяются нормативные средние за период измерений потери тепловой энергии в обратном трубопроводе для всех участков, расположенных в подвалах , Вт:

4. ОПРЕДЕЛЕНИЕ ФАКТИЧЕСКИХ ПОТЕРЬ ТЕПЛОВОЙ ЭНЕРГИИ

4.1. ОПРЕДЕЛЕНИЕ ФАКТИЧЕСКИХ ПОТЕРЬ ТЕПЛОВОЙ ЭНЕРГИИ

ЗА ПЕРИОД ИЗМЕРЕНИЙ

На источнике тепловой энергии и для всех потребителей тепловой энергии, имеющих приборы учета (i -ые потребители тепловой энергии), определяется средний за весь период измерений расход теплоносителя в подающем трубопроводе:

где - средний за весь период измерений расход теплоносителя по подающему трубопроводу на источнике тепловой энергии, кг/с;

Измеренные за период измерений значения расхода теплоносителя на источнике тепловой энергии, взятые из часового файла, т/ч;

i -го потребителя тепловой энергии, кг/с;

Измеренные за период измерений значения расхода теплоносителя у i -го потребителя тепловой энергии, взятые из часового файла, т/ч.

Для закрытой системы теплоснабжения определяется средний за весь период измерений расход подпиточной воды на источнике тепловой энергии:

где - средний за весь период измерений расход подпиточной воды на источнике тепловой энергии, кг/с;

Измеренные за период измерений значения расхода теплоносителя на подпитку на источнике тепловой энергии, взятые из часового файла, т/ч.

Средний за весь период измерений расход теплоносителя в подающем трубопроводе , кг/с, для всех потребителей тепловой энергии, не имеющих приборов учета (j -ых потребителей тепловой энергии), для закрытых систем теплоснабжения определяется по формуле:

Для открытых систем теплоснабжения , не имеющих круглосуточных потребителей теплоносителя, определяется средний за весь период измерений расход подпиточной воды на источнике тепловой энергии в ночное время.

Для этого за каждые сутки из периода измерений выбирается ночной (с 1:00 до 3:00) среднечасовой расход подпитки на источнике тепловой энергии. Для полученных данных определяется среднеарифметическое значение расхода, которое и является среднечасовой подпиткой тепловой сети в ночное время , т/ч. Для определения величины , кг/с, используется формула:

Для открытых систем теплоснабжения, имеющих промышленных потребителей, круглосуточно потребляющих теплоноситель и имеющих приборы учета, определяется среднечасовое потребление теплоносителя в ночное время. Для этого за каждые сутки из периода измерений выбирается ночной (с 1:00 до 3:00) среднечасовой расход теплоносителя у каждого такого потребителя. Для полученных данных определяется среднеарифметическое значение расхода , т/ч. Для определения величины , кг/с, используется формула:

Средний за весь период измерений расход теплоносителя в подающем трубопроводе для всех j -ых потребителей определяется по формуле 4.4.

Средний за весь период измерений расход теплоносителя в подающем трубопроводе для каждого j -го потребителя , кг/с, определяется путем распределения общего расхода теплоносителя по потребителям пропорционально среднечасовой присоединенной нагрузке:

где - среднечасовая присоединенная нагрузка в период измерений j -го потребителя, ГДж/ч;

j -ых потребителей без приборов учета в период измерений, ГДж/ч.

Для каждого i -го потребителя определяются средние за период измерений потери тепловой энергии через тепловую изоляцию подающего трубопровода , Вт:

где с p - удельная теплоемкость воды, с p = 4,187×10 3 Дж/(кг×К);

Измеренные значения температуры сетевой воды в подающем трубопроводе на источнике тепловой энергии, взятые из часового файла, °С;

i -го потребителя, взятые из часового файла, °С.

Определяются средние за период измерений суммарные потери тепловой энергии в подающих трубопроводах для всех i -ых потребителей, имеющих приборы учета, , Вт:

Определяются средние за период измерений потери тепловой энергии , Вт, через тепловую изоляцию подающего трубопровода, отнесенные к i -му потребителю, за вычетом потерь тепловой энергии в ответвлении от основного трубопровода:

В первом приближении потери тепловой энергии в ответвлении от основного трубопровода принимаются равными нормативным средним за период измерений потерям тепловой энергии:

где - нормативные средние за период измерений потери тепловой энергии в ответвлении от основного подающего трубопровода к i -му потребителю, Вт.

Суммарные потери тепловой энергии , Вт, в основных подающих трубопроводах для всех i -ых потребителей с приборами учета:

Коэффициент потерь тепловой энергии сети r потерь п, Дж/(кг×м), в основных подающих трубопроводах определяется по данным измерений для потребителей с приборами учета:

где l i - наименьшее расстояние от источника тепловой энергии до ответвления от основного трубопровода к потребителю с приборами учета, м.

При определении средних за период измерения потерь тепловой энергии , Вт, у j -ых потребителей без приборов учета используется соотношение:

где l j j -му потребителю без приборов учета, м.

Определяются средние за период измерений суммарные потери тепловой энергии , Вт, в подающих трубопроводах для j -ых потребителей, не имеющих приборов учета:

Фактические средние за период измерений суммарные потери тепловой энергии , Вт, во всех подающих трубопроводах:

После определения фактических потерь тепловой энергии в подающем трубопроводе для всех потребителей определяется отношение этих потерь тепловой энергии к нормативным потерям тепловой энергии в подающем трубопроводе:

и весь расчет проводится повторно (второе приближение), начиная с формулы 4.10, причем потери в ответвлениях от основных трубопроводов определяются по формуле:

После определения величины фактических потерь тепловой энергии в подающем трубопроводе для всех потребителей во втором приближении ее значение сравнивается с величиной фактических потерь тепловой энергии в подающем трубопроводе для всех потребителей, полученной в первом приближении , и определяется относительная разность :

Если значение > 0,05, то для определения величины проводится еще одно приближение, т.е. весь расчет, начиная с формулы 4.10, повторяется.

Обычно для получения удовлетворительного результата достаточно двух-трех приближений. Значение тепловых потерь , полученное по формуле 4.16 в последнем приближении, используется в дальнейшем расчете.

Возможен другой метод учета влияния ответвлений. Выполнив расчеты по формулам 4.1 - 4.9, определяется время движения теплоносителя t, с, от источника тепловой энергии до каждого из потребителей:

где t к - время движения теплоносителя на однородном участке тепловой сети, с;

l k

W k

r - плотность воды при средней за первые сутки периода наличия данных температуре сетевой воды в подающем трубопроводе на источнике тепловой энергии, кг/м 3 ;

F k - площадь сечения трубопровода на однородном участке, м 2 ;

G k - расход теплоносителя на однородном участке, кг/с.

Однородный участок тепловой сети - это участок, на котором не меняется расход теплоносителя и условный проход трубопровода, т.е. обеспечивается постоянство скорости теплоносителя.

Коэффициент потерь тепловой энергии, определяемый по времени движения теплоносителя в подающих трубопроводах, , Дж/(кг×с):

где t i i -го потребителя с приборами учета, с.

Средние за период измерения потери тепловой энергии через тепловую изоляцию в подающем трубопроводе , Вт, отнесенные к j -му потребителю без приборов учета:

где t j j -го потребителя без приборов учета, с.

Определив по формуле 4.15, вычисляем по формуле 4.16. Значение потерь тепловой энергии , полученное по формуле 4.16, используется в дальнейшем расчете.

Определяются средние за период измерений фактические потери тепловой энергии в подающих трубопроводах для всех участков подземной прокладки , Вт:

Определяются средние за период измерений фактические потери тепловой энергии в подающих трубопроводах для всех участков надземной прокладки , Вт:

Определяются средние за период измерений фактические потери тепловой энергии в подающих трубопроводах для всех участков, расположенных в проходных и полупроходных каналах, тоннелях, , Вт:

Определяются средние за период измерений фактические потери тепловой энергии в подающих трубопроводах для всех участков, расположенных в подвалах, , Вт:

Определяются средние за период измерений фактические потери тепловой энергии в обратных трубопроводах для всех участков подземной прокладки , Вт:

Определяются средние за период измерений фактические потери тепловой энергии в обратных трубопроводах для всех участков надземной прокладки , Вт:

Определяются средние за период измерений фактические потери тепловой энергии в обратных трубопроводах для всех участков, расположенных в проходных и полупроходных каналах, тоннелях, , Вт:

Определяются средние за период измерений фактические потери тепловой энергии в обратных трубопроводах для всех участков, расположенных в подвалах, , Вт:

Определяются средние за период измерений фактические суммарные потери тепловой энергии в обратных трубопроводах , Вт:

Определяются средние за период измерений фактические суммарные потери тепловой энергии , Вт, в сети:

4.2. ОПРЕДЕЛЕНИЕ ФАКТИЧЕСКИХ ПОТЕРЬ ТЕПЛОВОЙ ЭНЕРГИИ ЗА ГОД

Фактические потери тепловой энергии за год определяются, как сумма фактических потерь тепловой энергии за каждый месяц работы тепловой сети.

Фактические потери тепловой энергии за месяц определяются при среднемесячных условиях работы тепловой сети.

Для всех участков подземной прокладки определяются фактические среднемесячные потери тепловой энергии суммарно по подающему и обратному трубопроводам , Вт, по формуле:

Для всех участков надземной прокладки определяются фактические среднемесячные потери тепловой энергии отдельно по подающему , Вт, и обратному , Вт, трубопроводам по формулам:

Для всех участков, расположенных в проходных и полупроходных каналах и тоннелях

Для всех участков, расположенных в подвалах , определяются фактические среднемесячные потери тепловой энергии отдельно по подающему , Вт, и обратному , Вт, трубопроводам по формулам:

Фактические потери тепловой энергии во всей сети за месяц , ГДж, определяются по формуле:

где n мес - продолжительность работы тепловой сети в рассматриваемом месяце, ч.

Фактические потери тепловой энергии во всей сети за год , ГДж, определяются по формуле:

ПРИЛОЖЕНИЕ А

Термины и определения

Водяная система теплоснабжения - система теплоснабжения, в которой теплоносителем является вода .

Закрытая водяная система теплоснабжения - водяная система теплоснабжения, в которой не предусматривается использование сетевой воды потребителями путем ее отбора из тепловой сети .

Индивидуальный тепловой пункт - тепловой пункт, предназначенный для присоединения систем теплопотребления одного здания или его части .

Исполнительная документация - комплект рабочих чертежей, разработанных проектной организацией, с надписями о соответствии выполненных в натуре работ этим чертежам или внесенным в них изменениям, сделанными лицами, ответственными за производство работ .

Источник тепловой энергии (теплоты) - теплогенерирующая энергоустановка или их совокупность, в которой производится нагрев теплоносителя за счет передачи теплоты сжигаемого топлива, а также путем электронагрева или другими, в том числе нетрадиционными способами, участвующая в теплоснабжении потребителей .

Коммерческий учет (учет) тепловой энергии - определение на основании измерений и других регламентированных процедур тепловой мощности и количества тепловой энергии и теплоносителя с целью осуществления коммерческих взаиморасчетов между энергоснабжающими организациями и потребителями .

Котельная - комплекс технологически связанных тепловых энергоустановок, расположенных в обособленных производственных зданиях, встроенных, пристроенных или надстроенных помещениях с котлами, водонагревателями (в т.ч. установками нетрадиционного способа получения тепловой энергии) и котельно-вспомогательным оборудованием, предназначенный для выработки теплоты .

Норма потерь тепловой энергии (норма плотности теплового потока через изолированную поверхность) - значение удельных потерь тепловой энергии трубопроводами тепловой сети через их теплоизоляционные конструкции при расчетных среднегодовых значениях температуры теплоносителя и окружающей среды .

Открытая водяная система теплоснабжения - водяная система теплоснабжения, в которой вся сетевая вода или ее часть используется путем ее отбора из тепловой сети для удовлетворения нужд потребителей в горячей воде .

Отопительный период - время в часах или сутках в год, в течение которого производится отпуск тепловой энергии на отопление .

Подпиточная вода - специально подготовленная вода, подаваемая в тепловую сеть для восполнения потерь теплоносителя (сетевой воды), а также водоразбора на тепловое потребление .

Потери тепловой энергии - тепловая энергия, теряемая теплоносителем через изоляцию трубопроводов, а также тепловая энергия, утрачиваемая с теплоносителем при утечках, авариях, сливах, несанкционированном водоразборе .

Потребитель тепловой энергии - юридическое или физическое лицо, осуществляющее пользование тепловой энергией (мощностью) и теплоносителями .

- суммарная проектная максимальная тепловая нагрузка (мощность) всех систем теплопотребления при расчетной для каждого вида нагрузки температуре наружного воздуха либо суммарный проектный максимальный часовой расход теплоносителя для всех систем теплопотребления, присоединенных к тепловым сетям (источнику тепловой энергии) теплоснабжающей организации .

Сетевая вода - специально подготовленная вода, которая используется в водяной системе теплоснабжения в качестве теплоносителя .

Система теплопотребления - комплекс тепловых энергоустановок с соединительными трубопроводами и (или) тепловыми сетями, которые предназначены для удовлетворения одного или нескольких видов тепловой нагрузки .

Система теплоснабжения - совокупность взаимосвязанных источников теплоты, тепловых сетей и систем теплопотребления .

Система централизованного теплоснабжения - объединенные общим технологическим процессом источники тепловой энергии, тепловые сети и потребители тепловой энергии .

Тепловая нагрузка системы теплоснабжения (тепловая нагрузка) - суммарное количество тепловой энергии, получаемое от источников тепловой энергии, равное сумме теплопотреблений приемников тепловой энергии и потерь в тепловых сетях в единицу времени .

Тепловая сеть - совокупность устройств, предназначенных для передачи и распределения теплоносителя и тепловой энергии .

Тепловой пункт - комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя .

Теплоноситель теплосиловой установки, теплоноситель - движущаяся среда, используемая для передачи тепловой энергии в теплосиловой установке от более нагретого тела к менее нагретому телу .

Теплопотребляющая установка - тепловая энергоустановка или комплекс устройств, предназначенные для использования теплоты и теплоносителя на нужды отопления, вентиляции, кондиционирования, горячего водоснабжения и технологические нужды .

Теплоснабжение - обеспечение потребителей тепловой энергией (теплотой) .

Теплоэлектроцентраль (ТЭЦ) - паротурбинная электростанция, предназначенная для производства электрической и тепловой энергии .

Узел коммерческого учета тепловой энергии и (или) теплоносителей - совокупность аттестованных в установленном порядке средств и систем измерений и других устройств, предназначенных для коммерческого учета количества тепловой энергии и (или) теплоносителей, а также для обеспечения контроля качества тепловой энергии и режимов теплопотребления .

Централизованное теплоснабжение - теплоснабжение потребителей от источника тепловой энергии через общую тепловую сеть .

Центральный тепловой пункт (ЦТП) - тепловой пункт, предназначенный для присоединения двух и более зданий .

Эксплуатационная документация - документы, предназначенные для использования при эксплуатации, обслуживании и ремонте в процессе эксплуатации.

Энергоснабжающая (теплоснабжающая) организация - предприятие или организация, являющееся юридическим лицом и имеющее в собственности или в полном хозяйственном ведении установки, генерирующие электрическую и (или) тепловую энергию, электрические и (или) тепловые сети и обеспечивающее на договорной основе передачу электрической и (или) тепловой энергии потребителям .

ПРИЛОЖЕНИЕ Б

Условные обозначения величин

Фактические потери тепловой энергии во всей сети за год, ГДж;

Фактические потери тепловой энергии во всей сети за месяц, ГДж;

Фактические среднемесячные потери тепловой энергии суммарно по подающему и обратному трубопроводам для всех участков подземной прокладки, Вт;

Фактические среднемесячные потери тепловой энергии отдельно по подающему трубопроводу для всех участков надземной прокладки, Вт;

Фактические среднемесячные потери тепловой энергии отдельно по обратному трубопроводу для всех участков надземной прокладки, Вт;

Фактические среднемесячные потери тепловой энергии отдельно по подающему трубопроводу для всех участков, расположенных в проходных и полупроходных каналах, тоннелях, Вт;

Фактические среднемесячные потери тепловой энергии отдельно по обратному трубопроводу для всех участков, расположенных в проходных и полупроходных каналах, тоннелях, Вт;

Фактические среднемесячные потери тепловой энергии отдельно по подающему трубопроводу для всех участков, расположенных в подвалах, Вт;

Фактические среднемесячные потери тепловой энергии отдельно по обратному трубопроводу для всех участков, расположенных в подвалах, Вт;

Фактические суммарные потери тепловой энергии в сети средние за период измерений, Вт;

Фактические потери тепловой энергии в подающих трубопроводах для всех участков подземной прокладки средние за период измерений, Вт;

Фактические потери тепловой энергии в подающих трубопроводах для всех участков надземной прокладки средние за период измерений, Вт;

Фактические потери тепловой энергии в подающих трубопроводах для всех участков, расположенных в проходных и полупроходных каналах, тоннелях, средние за период измерений, Вт;

Фактические потери тепловой энергии в подающих трубопроводах для всех участков, расположенных в подвалах, средние за период измерений, Вт;

Фактические потери тепловой энергии в обратных трубопроводах для всех участков подземной прокладки средние за период измерений, Вт;

Фактические потери тепловой энергии в обратных трубопроводах для всех участков надземной прокладки средние за период измерений, Вт;

Фактические потери тепловой энергии в обратных трубопроводах для всех участков, расположенных в проходных и полупроходных каналах, тоннелях средние за период измерений, Вт;

Фактические потери тепловой энергии в обратных трубопроводах для всех участков, расположенных в подвалах средние за период измерений, Вт;

Фактические суммарные потери тепловой энергии во всех подающих трубопроводах средние за период измерений, Вт;

Фактические суммарные потери тепловой энергии во всех обратных трубопроводах средние за период измерений, Вт;

Суммарные потери тепловой энергии в подающих трубопроводах для j -ых потребителей, не имеющих приборов учета, средние за период измерений, Вт;

Потери тепловой энергии у j -ых потребителей без приборов учета средние за период измерения, Вт;

Суммарные потери тепловой энергии в подающих трубопроводах для всех i -ых потребителей, имеющих приборы учета, средние за период измерений, Вт;

Потери тепловой энергии через тепловую изоляцию подающего трубопровода для каждого i -го потребителя с приборами учета средние за период измерений, Вт;

Среднечасовая присоединенная нагрузка в период измерений j -го потребителя, ГДж/ч;

Среднечасовая присоединенная нагрузка всех j -ых потребителей без приборов учета в период измерений, ГДж/ч;

Средние за период измерений потери тепловой энергии через тепловую изоляцию подающего трубопровода, отнесенные к i -му потребителю, за вычетом потерь тепловой энергии в ответвлении от основного трубопровода, Вт;

Потери тепловой энергии в ответвлении от основного трубопровода, Вт;

Нормативные средние за период измерений потери тепловой энергии в ответвлении от основного подающего трубопровода к i -му потребителю, Вт;

Суммарные потери тепловой энергии в основных подающих трубопроводах для всех i -ых потребителей с приборами учета, Вт;

Нормативные потери тепловой энергии в подающем трубопроводе средние за период измерений, Вт;

Нормативные потери тепловой энергии в обратном трубопроводе средние за период измерений, Вт;

Нормативные средние за период измерений потери тепловой энергии в подающем трубопроводе для всей сети, Вт;

Нормативные средние за период измерений потери тепловой энергии в подающем трубопроводе для всех участков подземной прокладки, Вт;

Нормативные средние за период измерений потери тепловой энергии в обратном трубопроводе для всех участков подземной прокладки, Вт;

Нормативные средние за период измерений потери тепловой энергии в подающем трубопроводе для всех участков надземной прокладки, Вт;

Нормативные средние за период измерений потери тепловой энергии в обратном трубопроводе для всех участков надземной прокладки, Вт;

Нормативные средние за период измерений потери тепловой энергии в подающем трубопроводе для всех участков, расположенных в проходных и полупроходных каналах, тоннелях, Вт;

Нормативные средние за период измерений потери тепловой энергии в обратном трубопроводе для всех участков расположенных в проходных и полупроходных каналах, тоннелях, Вт;

Нормативные средние за период измерений потери тепловой энергии в подающем трубопроводе для всех участков, расположенных в подвалах, Вт;

Нормативные средние за период измерений потери тепловой энергии в обратном трубопроводе для всех участков расположенных в подвалах, Вт;

Среднегодовые нормативные потери тепловой энергии по подающему трубопроводу, Вт;

Среднегодовые нормативные потери тепловой энергии по обратному трубопроводу, Вт;

Относительная разность сравнения величины фактических потерь тепловой энергии в подающем трубопроводе для всех потребителей во втором приближении с величиной фактических потерь тепловой энергии в подающем трубопроводе для всех потребителей, полученной в первом приближении;

q н - нормативные удельные потери тепловой энергии суммарно по подающему и обратному трубопроводам для участков тепловых сетей подземной прокладки, Вт/м;

Удельные потери тепловой энергии суммарно по подающему и обратному трубопроводам при меньшем, чем для данной сети, табличном значении разности среднегодовых температур сетевой воды и грунта, Вт/м;

Удельные потери тепловой энергии суммарно по подающему и обратному трубопроводам при большем, чем для данной сети, табличном значении разности среднегодовых температур сетевой воды и грунта, Вт/м;

q но - среднегодовые нормативные удельные потери тепловой энергии в обратном трубопроводе, Вт/м;

q нп - среднегодовые нормативные удельные потери тепловой энергии в подающем трубопроводе, Вт/м;

Суммарные нормативные удельные потери тепловой энергии для подземной прокладки, Вт/м;

Соответственно, табличные значения нормативных удельных потерь тепловой энергии для подземной прокладки в подающем и обратном трубопроводах, Вт/м;

Удельные потери тепловой энергии по подающему трубопроводу при двух смежных, соответственно меньшем и большем, чем для данной сети, табличных значениях разности среднегодовых температур сетевой воды и грунта, Вт/м;

Удельные потери тепловой энергии по подающему трубопроводу при двух смежных, соответственно меньшем и большем, чем для данной сети, табличных значениях разности среднегодовых температур сетевой воды и наружного воздуха, Вт/м;

Удельные потери тепловой энергии по обратному трубопроводу при двух смежных, соответственно меньшем и большем, чем для данной сети, табличных значениях разности среднегодовых температур сетевой воды и наружного воздуха, Вт/м;

Средний за весь период измерений расход теплоносителя по подающему трубопроводу на источнике тепловой энергии, кг/с;

Измеренные значения расхода теплоносителя на источнике тепловой энергии, взятые из часового файла, т/ч;

Средний за весь период измерений расход теплоносителя по подающему трубопроводу у i -го потребителя тепловой энергии с приборами учета, кг/с;

Измеренные значения расхода теплоносителя у i -го потребителя тепловой энергии, взятые из часового файла, т/ч;

Средний за весь период измерений расход подпиточной воды на источнике тепловой энергии, кг/с;

Измеренные значения расхода теплоносителя на подпитку на источнике тепловой энергии, взятые из часового файла, т/ч;

Средний за весь период измерений расход теплоносителя в подающем трубопроводе для всех потребителей тепловой энергии, не имеющих приборов учета, кг/с;

Среднечасовая подпитка тепловой сети в ночное время, т/ч;

Среднечасовой расход теплоносителя у каждого i -го потребителя, имеющего приборы учета в ночное время за каждые сутки из периода измерений, т/ч;

Средний за весь период измерений расход теплоносителя в подающем трубопроводе для каждого j -го потребителя, не имеющего приборов учета, кг/с;

G k - расход теплоносителя на однородном участке, кг/с;

Среднемесячная температура наружного воздуха, °С;

Среднемесячная температура грунта на средней глубине заложения оси трубопровода, °С;

Среднегодовая температура наружного воздуха, °С;

Среднегодовая температура грунта на средней глубине заложения оси трубопроводов, °С;

Среднемесячная температура сетевой воды в подающем трубопроводе, °С;

Среднемесячная температура сетевой воды в обратном трубопроводе, °С;

Среднегодовая температура сетевой воды в подающем трубопроводе, °С;

Среднегодовая температура сетевой воды в обратном трубопроводе, °С;

Средняя за период измерений температура сетевой воды в подающем трубопроводе на источнике тепловой энергии, °С;

Средняя за период измерений температура сетевой воды в обратном трубопроводе на источнике тепловой энергии, °С;

Измеренные значения температуры сетевой воды в подающем трубопроводе на источнике тепловой энергии, взятые из часового файла, °С;

Измеренные значения температуры сетевой воды в обратном трубопроводе на источнике тепловой энергии, взятые из часового файла, °С;

Средняя температура грунта на средней глубине заложения оси трубопровода за период измерений, °С;

Средняя температура наружного воздуха за период измерений, °С;

Соответственно, табличные значения среднегодовых температур сетевой воды в подающем (65, 90, 110 °С) и обратном (50 °С) трубопроводах, °С;

Нормативное значение среднегодовой температуры грунта, °С;

Измеренные значения температуры сетевой воды в подающем трубопроводе у i -го потребителя, взятые из часового файла, °С;

Значение разности среднегодовых температур сетевой воды и грунта для данной тепловой сети, °С;

Меньшее, чем для данной сети, табличное значение разности среднегодовых температур сетевой воды и грунта, °С;

Большее, чем для данной сети, табличное значение разности среднегодовых температур сетевой воды и грунта, °С;

Разность среднегодовых температур для каждой пары значений среднегодовых температур в подающих и обратных трубопроводах и грунта, °С;

Значение разности среднегодовых температур сетевой воды и грунта для подающего трубопровода рассматриваемой тепловой сети, °С;

Смежные, соответственно меньшее и большее, чем для данной сети, табличные значения разности среднегодовых температур сетевой воды в подающем трубопроводе и грунта, °С;

Значение разности среднегодовых температур сетевой воды и наружного воздуха соответственно для подающего и обратного трубопроводов для данной тепловой сети, °С;

Смежные, соответственно меньшее и большее, чем для данной сети, табличные значения разности среднегодовых температур сетевой воды в подающем трубопроводе и наружного воздуха, °С;

Смежные, соответственно меньшее и большее, чем для данной сети, табличные значения разности среднегодовых температур сетевой воды в обратном трубопроводе и наружного воздуха, °С;

V п - суммарный объем всех подающих трубопроводов тепловой сети, м 3 ;

L - длина участка тепловой сети, м;

l i - наименьшее расстояние от источника тепловой энергии до ответвления от основного трубопровода к i -му потребителю с приборами учета, м;

l j - наименьшее расстояние от источника тепловой энергии до ответвления к j -му потребителю без приборов учета, м (стр. 18);

l k - длина однородного участка, м;

r - плотность воды при средней за первые сутки периода наличия данных температуре сетевой воды в подающем трубопроводе на источнике тепловой энергии, кг/м 3 ;

c p - удельная теплоемкость воды, Дж/(кг×К);

W k - скорость теплоносителя на однородном участке, м/с;

F k - площадь прохода трубопровода на однородном участке, м 2 ;

b - коэффициент местных потерь тепловой энергии, учитывающий потери тепловой энергии арматурой, компенсаторами и опорами;

r потерь п - коэффициент потерь тепловой энергии сети в основных подающих трубопроводах, Дж/(кг×м);

Коэффициент потерь тепловой энергии, определяемый по времени движения теплоносителя в подающих трубопроводах, Дж/(кг×с);

n и - количество часов в периоде измерений;

n мес - продолжительность работы тепловой сети в рассматриваемом месяце, ч;

t п - время заполнения всех подающих трубопроводов теплоносителем, с;

t - время движения теплоносителя от источника тепловой энергии до каждого из потребителей, с;

t к - время движения теплоносителя на однородном участке тепловой сети, с;

t i - время движения теплоносителя по подающему трубопроводу от источника тепловой энергии до i -го потребителя с приборами учета, с;

t j - время движения теплоносителя по наименьшему расстоянию от источника тепловой энергии до j -го потребителя без приборов учета, с;

K - отношение фактических потерь тепловой энергии в подающем трубопроводе для всех потребителей к нормативным потерям тепловой энергии в подающем трубопроводе.

ПРИЛОЖЕНИЕ В

Характеристика участков тепловой сети

Таблица В.1


ПРИЛОЖЕНИЕ Г

Среднемесячные и среднегодовые температуры окружающей среды и сетевой воды

Таблица Г.1

Месяцы Температура средняя за 5 лет, °С Температура сетевой воды, °С
грунта наружного воздуха в подающем трубопроводе в обратном трубопроводе
Январь
Февраль
Март
Апрель
Май
Июнь
Июль
Август
Сентябрь
Октябрь
Ноябрь
Декабрь
Среднегодовая температура, °С

ПРИЛОЖЕНИЕ Д

Характеристика потребителей тепловой энергии и приборов учета

Таблица Д.1

Наименование потребителя Тип системы теплоснабжения (открытая, закрытая) Марка прибора учета Глубина архива Наличие централизованного сбора данных (да, нет)
отопление вентиляция ГВС всего суточный часовой
1 2 3 4 5 6 7 8 9 10

ПРИЛОЖЕНИЕ Е

Нормы потерь тепловой энергии изолированными водяными теплопроводами, расположенными в непроходных каналах и при бесканальной прокладке (с расчетной температурой грунта +5 °С на глубине заложения теплопроводов) по

Таблица Е.1

Наружный диаметр труб, мм
Обратного теплопровода при средней температуре воды (t o =50 °С) Двухтрубной прокладки при разности среднегодовых температур воды и грунта 52,5 °С (t п =65°C) Двухтрубной прокладки при разности среднегодовых температур воды и грунта 65 °С (t п =90°C) Двухтрубной прокладки при разности среднегодовых температур воды и грунта 75 °С (t п =110°С)
32 23 52 60 67
57 29 65 75 84
76 34 75 86 95
89 36 80 93 102
108 40 88 102 111
159 49 109 124 136
219 59 131 151 165
273 70 154 174 190
325 79 173 195 212
377 88 191 212 234
426 95 209 235 254
478 106 230 259 280
529 117 251 282 303
630 133 286 321 345
720 145 316 355 379
820 164 354 396 423
920 180 387 433 463
1020 198 426 475 506
1220 233 499 561 591
1420 265 568 644 675

ПРИЛОЖЕНИЕ Ж

Нормы потерь тепловой энергии одним изолированным водяным

теплопроводом при надземной прокладке

(с расчетной среднегодовой температурой наружного воздуха +5 °С) по

Таблица Ж.1

Наружный диаметр труб, мм Нормы потерь тепловой энергии, Вт/м
Разность среднегодовой температуры сетевой воды в подающем или обратном трубопроводах и наружного воздуха, °С
45 70 95 120
32 17 27 36 44
49 21 31 42 52
57 24 35 46 57
76 29 41 52 64
89 32 44 58 70
108 36 50 64 78
133 41 56 70 86
159 44 58 75 93
194 49 67 85 102
219 53 70 90 110
273 61 81 101 124
325 70 93 116 139
377 82 108 132 157
426 95 122 148 174
478 103 131 158 186
529 110 139 168 197
630 121 154 186 220
720 133 168 204 239
820 157 195 232 270
920 180 220 261 302
1020 209 255 296 339
1420 267 325 377 441

ПРИЛОЖЕНИЕ И

Нормы плотности теплового потока через изолированную поверхность трубопроводов двухтрубных водяных тепловых сетей при прокладке в непроходных каналах, Вт/м, по

Таблица И.1

Трубопровод
подающий обратный подающий обратный подающий обратный
65 50 90 50 110 50
25 16 11 23 10 28 9
30 17 12 24 11 30 10
40 18 13 26 12 32 11
50 20 14 28 13 35 12
65 23 16 34 15 40 13
80 25 17 36 16 44 14
100 28 19 41 17 48 15
125 31 21 42 18 50 16
150 32 22 44 19 55 17
200 39 27 54 22 68 21
250 45 30 64 25 77 23
300 50 33 70 28 84 25
350 55 37 75 30 94 26
400 58 38 82 33 101 28
450 67 43 93 36 107 29
500 68 44 98 38 117 32
600 79 50 109 41 132 34
700 89 55 126 43 151 37
800 100 60 140 45 163 40
900 106 66 151 54 186 43
1000 117 71 158 57 192 47
1200 144 79 185 64 229 52
1400 152 82 210 68 252 56

ПРИЛОЖЕНИЕ К

Нормы плотности теплового потока через изолированную поверхность трубопроводов при двухтрубной подземной бесканальной прокладке водяных тепловых сетей, Вт/м, по

Таблица К.1

Условный проход трубопровода, мм При числе часов работы в год более 5000
Трубопровод
подающий обратный подающий обратный
Среднегодовая температура теплоносителя, °С
65 50 90 50
25 33 25 44 24
50 40 31 54 29
65 45 34 60 33
80 46 35 61 34
100 49 38 65 35
125 53 41 72 39
150 60 46 80 43
200 66 50 89 48
250 72 55 96 51
300 79 59 105 56
350 86 65 113 60
400 91 68 121 63
450 97 72 129 67
500 105 78 138 72
600 117 87 156 80
700 126 93 170 86
800 140 102 186 93

Коэффициент, учитывающий изменение норм плотности теплового потока при применении теплоизоляционного слоя из пенополиуретана, полимербетона, фенольного поропласта ФЛ

Таблица К.2

ПРИЛОЖЕНИЕ Л

Нормы плотности теплового потока через изолированную поверхность трубопроводов водяных тепловых сетей при расположении на открытом воздухе, Вт/м, по

Таблица Л.1

Условный проход трубопровода, мм При числе часов работы в год более 5000
Среднегодовая температура теплоносителя, °С
50 100 150
15 10 20 30
20 11 22 34
25 13 25 37
40 15 29 44
50 17 31 47
65 19 36 54
80 21 39 58
100 24 43 64
125 27 49 70
150 30 54 77
200 37 65 93
250 43 75 106
300 49 84 118
350 55 93 131
400 61 102 142
450 65 109 152
500 71 119 166
600 82 136 188
700 92 151 209
800 103 167 213
900 113 184 253
1000 124 201 275
35 54 70

ПРИЛОЖЕНИЕ М

Нормы плотности теплового потока через изолированную поверхность трубопроводов водяных тепловых сетей при расположении в помещении и тоннеле, Вт/м, по

Таблица М.1

Условный проход трубопровода, мм При числе часов работы в год более 5000
Среднегодовая температура теплоносителя, °С
50 100 150
15 8 18 28
20 9 20 32
25 10 22 35
40 12 26 41
50 13 28 44
65 15 32 50
80 16 35 54
100 18 39 60
125 21 44 66
150 24 49 73
200 29 59 88
250 34 68 100
300 39 77 112
350 44 85 124
400 48 93 135
450 52 101 145
500 57 109 156
600 67 125 176
700 74 139 199
800 84 155 220
900 93 170 241
1000 102 186 262
Криволинейные поверхности с наружным условным проходом более 1020 мм и плоские Нормы поверхностной плотности теплового потока, Вт/м 2
29 50 68

ПРИЛОЖЕНИЕ Н

Нормы плотности теплового потока через изолированную поверхность трубопроводов двухтрубных водяных тепловых сетей при прокладке в непроходных каналах и подземной бесканальной прокладке, Вт/м, по

Таблица Н.1

Условный проход трубопровода, мм При числе часов работы в год более 5000
Трубопровод
подающий обратный подающий обратный подающий обратный
Среднегодовая температура теплоносителя, °С
65 50 90 50 110 50
25 14 9 20 9 24 8
30 15 10 20 10 26 9
40 16 11 22 11 27 10
50 17 12 24 12 30 11
65 20 13 29 13 34 12
80 21 14 31 14 37 13
100 24 16 35 15 41 14
125 26 18 38 16 43 15
150 27 19 42 17 47 16
200 33 23 49 19 58 18
250 38 26 54 21 66 20
300 43 28 60 24 71 21
350 46 31 64 26 80 22
400 50 33 70 28 86 24
450 54 36 79 31 91 25
500 58 37 84 32 100 27
600 67 42 93 35 112 31
700 76 47 107 37 128 31
800 85 51 119 38 139 34
900 90 56 128 43 150 37
1000 100 60 140 46 163 40
1200 114 67 158 53 190 44
1400 130 70 179 58 224 48

ПРИЛОЖЕНИЕ П

Нормы плотности теплового потока через изолированную поверхность трубопроводов водяных тепловых сетей при расположении на открытом воздухе по

Таблица П.1

Условный проход трубопровода, мм При числе часов работы в год более 5000
Среднегодовая температура теплоносителя, °С
50 100 150
25 11 20 30
40 12 24 36
50 14 25 38
65 15 29 44
80 17 32 47
100 19 35 52
125 22 40 57
150 24 44 62
200 30 53 75
250 35 61 86
300 40 68 96
350 45 75 106
400 49 83 115
450 53 88 123
500 58 96 135
600 66 110 152
700 75 122 169
800 83 135 172
900 92 149 205
1000 101 163 223
Криволинейные поверхности с наружным условным проходом более 1020 мм и плоские Нормы поверхностной плотности теплового потока, Вт/м 2
28 44 57

ПРИЛОЖЕНИЕ Р

Нормы плотности теплового потока через изолированную поверхность трубопроводов водяных тепловых сетей при расположении в помещении и тоннеле по

Таблица Р.1

Условный проход трубопровода, мм При числе часов работы в год более 5000
Среднегодовая температура теплоносителя, °С
50 100 150
Нормы линейной плотности теплового потока, Вт/м
25 8 18 28
40 10 21 33
50 10 22 35
65 12 26 40
80 13 28 43
100 14 31 48
125 17 35 53
150 19 39 58
200 23 47 70
250 27 54 80
300 31 62 90
350 35 68 99
400 38 74 108
450 42 81 116
500 46 87 125
600 54 100 143
700 59 111 159
800 67 124 176
900 74 136 193
1000 82 149 210
Криволинейные поверхности с наружным условным проходом более 1020 мм и плоские Нормы поверхностной плотности теплового потока, Вт/м 2
23 40 54

Примечание. При расположении изолированных поверхностей в тоннеле (проходном и полупроходном каналах) к нормам плотности следует вводить коэффициент 0,85.

ПРИЛОЖЕНИЕ С

Перечень нормативно-технических документов, на которые имеются ссылки

1. Определение фактических тепловых потерь через теплоизоляцию в сетях централизованного теплоснабжения /Семенов В. Г. - М.: Новости теплоснабжения, 2003 (№ 4).

2. Нормы проектирования тепловой изоляции для трубопроводов и оборудования электростанций и тепловых сетей. - М.: Госстройиздат, 1959.

3. СНиП 2.04.14-88*. Тепловая изоляция оборудования и трубопроводов. - М.: ГУП ЦПП Госстроя России, 1999.

4. Методика расчета потерь тепла в тепловых сетях при транспортировке. - М.: Фирма ОРГРЭС, 1999.

5. Правила технической эксплуатации тепловых энергоустановок. - М.: Изд-во НЦ ЭНАС, 2003.

6. Типовая инструкция по технической эксплуатации систем транспорта и распределения тепловой энергии (тепловых сетей): РД 153-34.0-20.507-98. - М.: СПО ОРГРЭС, 1986.

7. Методика определения нормативных значений показателей функционирования водяных тепловых сетей систем коммунального теплоснабжения. - М.: Роскоммунэнерго, 2002.

9. ГОСТ 26691-85. Теплоэнергетика. Термины и определения.

10. ГОСТ 19431-84. Энергетика и электрификация. Термины и определения.

11. Правила разработки предписаний, циркуляров, оперативных указаний, руководящих документов и информационных писем в электроэнергетике: РД 153-34.0-01.103-2000. - М.: СПО ОРГРЭС, 2000.

1. ОБЩИЕ ПОЛОЖЕНИЯ

2. СБОР И ОБРАБОТКА ИСХОДНЫХ ДАННЫХ

2.1. Сбор исходных данных по тепловой сети

2.2. Обработка исходных данных приборов учета

3. ОПРЕДЕЛЕНИЕ НОРМАТИВНЫХ ПОТЕРЬ ТЕПЛОВОЙ ЭНЕРГИИ

3.1. Определение среднегодовых нормативных потерь тепловой энергии

3.2. Определение нормативных потерь тепловой энергии за период измерений

4. ОПРЕДЕЛЕНИЕ ФАКТИЧЕСКИХ ПОТЕРЬ ТЕПЛОВОЙ ЭНЕРГИИ

4.1. Определение фактических потерь тепловой энергии за период измерений

4.2. Определение фактических потерь тепловой энергии за год

ПРИЛОЖЕНИЯ

Приложение А. Термины и определения

Приложение Б. Условные обозначения величин

Приложение В. Характеристика участков тепловой сети

Приложение Г. Среднемесячные и среднегодовые температуры окружающей среды и сетевой воды

Приложение Д. Характеристика потребителей тепловой энергии и приборов учета

Приложение Е. Нормы потерь тепловой энергии изолированными водяными теплопроводами, расположенными в непроходных каналах и при бесканальной прокладке

Приложение Ж. Нормы потерь тепловой энергии одним изолированным водяным теплопроводом при надземной прокладке

Приложение И. Нормы плотности теплового потока через изолированную поверхность трубопроводов двухтрубных водяных тепловых сетей при прокладке в непроходных каналах

Приложение К. Нормы плотности теплового потока через изолированную поверхность трубопроводов при двухтрубной подземной бесканальной прокладке водяных тепловых сетей

Приложение Л. Нормы плотности теплового потока через изолированную поверхность трубопроводов водяных тепловых сетей при расположении на открытом воздухе

Приложение М. Нормы плотности теплового потока через изолированную поверхность трубопроводов водяных тепловых сетей при расположении в помещении и тоннеле

Приложение Н. Нормы плотности теплового потока через изолированную поверхность трубопроводов двухтрубных водяных тепловых сетей при прокладке в непроходных каналах и подземной бесканальной прокладке

Приложение П. Нормы плотности теплового потока через изолированную поверхность трубопроводов водяных тепловых сетей при расположении на открытом воздухе

Приложение Р. Нормы плотности теплового потока через изолированную поверхность трубопроводов водяных тепловых сетей при расположении в помещении и тоннеле

Приложение С. Перечень нормативно-технических документов, на которые имеются ссылки

2.2 Определение теплопотерь и циркуляционных расходов в подающих трубопроводах системы горячего водоснабжения

Циркуляционный расход горячей воды в системе , л/с:

где>- суммарные теплопотери подающими трубопроводами системы ГВС, кВт;

Разность температур в подающих трубопроводах системы до наиболее удаленной водоразборной точки, , принято 10;

Коэффициент разрегулировки циркуляции, принято1

Для системы с переменным сопротивлением циркуляционных стояков величину определяют по подающим трубопроводам и водоразборным стоякам при = 10и = 1

Теплопотери на участках , кВт, определяются по формуле

Где: q - теплопотери 1 м трубопровода, Вт/м, приняты по прил.7 AAAAAAAAAAAAAAAAAAAAAAAAAAA

l - длина участка трубопровода, м, принята по чертежу

При расчете теплопотерь участков водоразборных стояков теплопотери полотенцесушителя приняты равными 100 Вт, при этом его длина исключена из длины этажестояка . Для удобства расчет теплопотерь сведен в одну таблицу 2 с гидравлическим расчетом сети.

Определим теплопотери для всей системы в целом. Для удобства принято что стояки, расположенные на плане в зеркальном отражении равны между собой. Тогда теплопотери стояков, расположенных слева от ввода будут равны:

1,328*2+0,509+1,303*2+2,39*2+2,432*2+2,244=15,659 кВт

А стояков, расположенных справа:

1,328*2+(0,509-0,144) +2,39*2+(0,244-0,155) =7,89 кВт

Суммарные теплопотери на дом составят 23,55 кВт.

Определим циркуляционный расход:

Определим расчетный секундный расход горячей воды, л/с, на участках 45 и 44. Для этого определим отношение qh/qcir, для участков 44 и 45 оно соответственно равняется 4,5 и 5,5. По прил.5 коэффициент Kcir=0 в обоих случаях, следовательно, предварительный расчет является окончательным.

Для обеспечения циркуляции предусмотрен циркуляционный насос марки WILO Star-RS 30/7

2.3 Подбор водомера

В соотв. с п.п а) п. 3.4 проверяем условие 1,36м<5м, условие выполняется, принимаем крыльчатый водомер METRON Ду 50 мм.

3. Расчет и проектирование системы канализации

Система канализации предназначена для удаления из здания загрязнений, образующихся в процессе санитарно-гигиенических процедур, хозяйственной деятельности, а также атмосферных и талых вод. Внутренняя канализационная сеть состоит из отводных трубопроводов, стояков, выпусков, вытяжной части, устройств для прочистки. Отводные трубы служат для отвода сточных вод от санитарных приборов и передачи их в стояк. Отводные трубы присоединяют к гидрозатворам санитарных приборов и прокладывают с уклоном в сторону стояка. Стояки предназначены для транспортирования стоков в канализационный выпуск. Они собирают стоки от отводных труб и диаметром должны быть не менее наибольшего диаметра отводной трубы или выпуска прибора, присоединяемого к стояку.

В данном проекте внутриквартирная разводка выполнена из раструбных ПВХ труб диаметром 50 мм, стояки диаметром 100 мм выполнены из чугуна, также соединяемого раструбами. Присоединение к стоякам выполняется с помощью крестовин и тройников. На сети предусмотрены ревизии и прочистки для удаления засоров.

3.1 Определение расчетных расходов канализации

Общий максимальный расчетный расход воды:

Где: - расход воды прибором, принят равным 0,3 л/с в соотв. с прил.4 ; - коэффициент, зависящий от общего числа приборов и вероятности их использования Рtot

Где: - общая норма расхода в час наибольшего водопотребления, л, принято в соответствии с прил.4 равным 20

Число водопотребителей, равное 104*4,2 чел

Число санитарно-технических приборов, принято 416 по заданию

Тогда, произведение N*=416*0,019=7,9, следовательно, =3,493

Полученное значение меньше 8л/с, следовательно, максимальный секундный расход сточных вод:

Где: - расход от санитарно - технического прибора с наибольшим водоотведением, л/с, принят по прил.2 для унитаза со смывным бачком равным 1,6

3.2 Расчет стояков

Расход воды на стояки К1-1, К1-2, К1-5, К1-6 будет одинаков, так как к этим стоякам присоединяется равное число приборов, к каждому по 52 прибора.

Принимаем диаметр стояка 100 мм, диаметр поэтажного отвода100 мм, угол поэтажного отвода 90°. Максимальная пропускная способность 3,2 л/с. Расчетный расход 2,95 л/с. Следовательно, стояк работает в нормальном гидравлическом режиме.

Расход воды на стояки К1-3, К1-4 будет одинаков, так как к этим стоякам присоединяется равное число приборов, к каждому по 104 прибора.

Для поддержания постоянной температуры у водоразборных приборов в жилых и общественных зданиях предусматривают циркуляцию горячей воды между точками водоразбора и генератором тепла. Величина циркуляционного расхода определяется при тепловом расчете сети ЦГВ. В зависимости от величины циркуляционного расхода на расчетных участках назначаются диаметры циркуляционных трубопроводов. Величина теплопотерь системой ЦГВ определяется как сумма потерь тепла на участках сети по формуле

где – удельные теплопотери 1 п. м трубопровода.

При проектировании систем ЦГВ с секционными узлами теплопотери 1 п. м трубопровода можно принимать, согласно, в зависимости от типа трубопровода, места и способа его прокладки. Теплопотери 1 п. м труб приведены в приложении 2 . Теплопотери изолированными трубопроводами квартальной сети при различных условиях прокладки даны в приложении 3 .

Циркуляционный расход горячей воды, согласно п.8.2 в системе определяют по формуле:

где Q ht – теплопотери трубопроводами горячего водоснабжения, кВт;

t – разность температур в подающих трубопроводах системы от водонагревателя до наиболее удаленной водоразборной точки, С;

 – коэффициент разрегулировки циркуляции.

Значения Q ht и  принимаем при одинаковом сопротивлении секционных узлов

Dt = 8,5С и b = 1,3.

В соответствии с рекомендациями п.9.16 предусматриваем тепловую изоляцию подающих и циркуляционных трубопроводов, включая стояки, кроме подводок к приборам и полотенцесушителей. В качестве теплоизоляции принимаем формованные минераловатные цилиндры, выпускаемые компанией Rokwool Russia.

Теплопотери определяются для всех подающих трубопроводов системы горячего водопровода. Расчет ведется в форме таблицы 4. Удельные теплопотери принимаем по приложениям 2 и 3 .

Таблица 4. Расчет теплопотерь подающими трубопроводами

Диаметр трубы, мм

Кол-во стояков или полотенце-сушителей

Длина стояка или трубопровода, м

Суммар-ная длина труб, м

Удель-ные теплопо-тери, Вт

Тепло-потери стояков, Вт

Теплопотери магистральных трубопроводов, Вт

Водоразборные стояки

Полотенцесушители

Магистральные трубы в подвале

Итого для одного дома:

Итого для двух домов:

Магистральные трубы в канале

Суммарные потери тепла: Q ht = 29342 + 3248 = 32590 Вт = 32,59 кВт

3.3. Гидравлический расчет подающих трубопроводов при подаче циркуляционных расчетов

Гидравлический расчет подающих трубопроводов на пропуск по ним циркуляционных расходов производится при отсутствии водоразбора. Величина циркуляционного расхода определяется по формуле

Для секционных узлов с одинаковым сопротивлением принимаем Dt = 8,5°С и b = 1,3.

Циркуляционный расход от водонагревателя подается по подающим трубопроводам и водоразборным стоякам и отводится по циркуляционным стоякам и циркуляционным магистральным трубопроводам к водонагревателю. Так как стояки одинаковые, то для восполнения теплопотерь трубами по каждому водоразборному стояку должен проходить одинаковый циркуляционный расход.

Определяем величину циркуляционного расхода, проходящему по стояку:

где n ст – количество водоразборных стояков в жилом доме.

Гидравлический расчет подающих и циркуляционных трубопроводов производим по расчетному направлению относительно диктующей точки. Удельные потери напора принимаем по приложению 1. Результаты расчета приведены в таблице 5.

Таблица 5. Гидравлический расчет подающих трубопроводов на пропуск

циркуляционного расхода

Номер участка

Диаметр трубы, мм

Циркуляционный расход, л/с

Ско-рость, м/с

Потери напора, мм

На уча-стке

H=il (1+K l)

∑h l = 970,14 мм =

Об оплате тепловой энергии в межотопительный период
Летом в квитанциях петербуржцев за жилищно-коммунальные услуги появилась строка «потери тепловой энергии в горячей воде». Формулировка позиции может отличаться, но суть одна – с переходом на сезонную оплату отопления возникла необходимость оплаты расхода тепловой энергии, связанного с теплоотдачей через стояки и полотенцесушители. Например, в письме Жилищного комитета Санкт-Петербурга дается разъяснение «о порядке оплаты тепловой энергии на циркуляцию горячего водоснабжения через полотенцесушители». Проблема состоит в том, что в соответствии с существующим законодательством и нормативно-правовой базой, тарифы на тепловую энергию, в том числе на нужды горячего водоснабжения, могут устанавливаться только в руб./Гкал. Теплоснабжающие организации (ГУП «ТЭК СПб», ТГК) так и поступают, выставляя счета за тепловую энергию по показаниям узлов учета в Гкал по установленным тарифам (ценам). А начисление жильцам платы за горячее водоснабжение производится по показаниям квартирных счетчиков или по нормативу потребления в кубических метрах, что приводит к существенной разнице между стоимостью тепловой энергии и стоимостью горячей воды. Эта разница может быть более 30%.А как же было раньше? В период, когда начислялась плата за отопление, дополнительный расход тепловой энергии на стояки и полотенцесушители учитывался в плате за отопление, так называемый ОДН. Но согласно Правилам, утвержденным Постановлением Правительства РФ от 16.04.2013 г. № 344 плата за отопление на ОДН отменена. В соответствии с Правилами, расчет размера платы за коммунальные услуги производится исходя из фактических объемов потребления коммунальных ресурсов в соответствии с показаниями общедомовых приборов учета (ОДПУ). Из чего следует, что вся тепловая энергия должна быть оплачена в полном объеме. Как говорится, надо платить по счетам. Правилами, разработанными Минрегионразвития, порядок оплаты этих затрат не предусмотрен. В настоящее время Минрегионразвития РФ разрабатываются соответствующие изменения, связанные с указанным теплопотреблением, для внесения их в постановления Правительства РФ № 306 и № 354.До внесения указанных изменений Комитет по тарифам Санкт-Петербурга рекомендовал относить суммы, превышающие расход тепловой энергии на горячее водоснабжение, превышающие расчетный расход 0,06 Гкал/куб. м на статью «тепловая энергия на подогрев воды в целях горячего водоснабжения». (Письмо № 01-14-1573/13-0-1 от 17.06.2013 г.) Таким образом, появившаяся строка в квитанции правомерна и полностью соответствует требованиям ст.7 и ст.39 Жилищного кодекса РФ.
Это напечатано на сайте УК.


СНиП 2.04.01-85*

Строительные нормы и правила

Внутренний водопровод и канализация зданий.

Системы внутреннего холодного и горячего водоснабжения

ВОДОПРОВОД

8. Расчет водопроводной сети горячей воды

8.1. Гидравлический расчет систем горячего водоснабжения следует производить на расчетный расход горячей воды

С учетом циркуляционного расхода, л/с, определяемого по формуле

где - коэффициент, принимаемый: для водонагревателей и начальных участков систем до первого водоразборного стояка по обязательному приложению 5 ;

для остальных участков сети - равным 0.

8.2. Циркуляционный расход горячей воды в системе, л/с, следует определять по формуле

где - коэффициент разрегулировки циркуляции;

Теплопотери трубопроводами горячего водоснабжения, кВт;

Разность температур в подающих трубопроводах системы от водонагревателя до наиболее удаленной водоразборной точки, °С.

Значения и в зависимости от схемы горячего водоснабжения следует принимать:

для систем, в которых не предусматривается циркуляция воды по водоразборным стоякам, величину следует определять по подающим и разводящим трубопроводам при = 10°С и = 1;

для систем, в которых предусматривается циркуляция воды по водоразборным стоякам с переменным сопротивлением циркуляционных стояков, величину следует определять по подающим разводящим трубопроводам и водоразборным стоякам при = 10°С и = 1; при одинаковом сопротивлении секционных узлов или стояков величину следует определять по водоразборным стоякам при = 8,5°С и = 1,3;

для водоразборного стояка или секционного узла теплопотери следует определять по подающим трубопроводам, включая кольцующую перемычку, принимая = 8,5°С и = 1.

8.3. Потери напора на участках трубопроводов систем горячего водоснабжения следует определять:

для систем, где не требуется учитывать зарастание труб, - в соответствии с п.7.7;

для систем с учетом зарастания труб - по формуле

где i - удельные потери напора, принимаемые согласно рекомендуемому приложению 6 ;

Коэффициент, учитывающий потери напора в местных сопротивлениях, значения которого следует принимать:

0,2 - для подающих и циркуляционных распределительных трубопроводов;

0,5 - для трубопроводов в пределах тепловых пунктов, а также для трубопроводов водоразборных стояков с полотенцесушителями;

0,1 - для трубопроводов водоразборных стояков без полотенцесушителей и циркуляционных стояков.

8.4. Скорость движения воды следует принимать в соответствии с п. 7.6.

8.5. Потери напора в подающих и циркуляционных трубопроводах от водонагревателя до наиболее удаленных водоразборных или циркуляционных стояков каждой ветви системы не должны отличаться для разных ветвей более чем на 10%.

8.6. При невозможности увязки давлений в сети трубопроводов систем горячего водоснабжения путем соответствующего подбора диаметров труб следует предусматривать установку регуляторов температуры или диафрагм на циркуляционном трубопроводе системы.

Диаметр диафрагмы не следует принимать менее 10 мм. Если по расчету диаметр диафрагм необходимо принимать менее 10 мм, то допускается вместо диафрагмы предусматривать установку кранов для регулирования давления.

Диаметр отверстий регулирующих диафрагм рекомендуется определять по формуле

8.7. В системах с одинаковым сопротивлением секционных узлов или стояков суммарные потери давления по подающему и циркуляционному трубопроводам в пределах между первым и последним стояками при циркуляционных расходах должны в 1,6 раза превышать потери давления в секционном узле или стояке при разрегулировке циркуляции = 1,3.

Диаметры трубопроводов циркуляционных стояков следует определять в соответствии с требованиями п. 7.6 при условии, чтобы при циркуляционных расходах в стояках или секционных узлах, определенных в соответствии с п. 8.2, потери давления между точками присоединения их к распределительному подающему и сборному циркуляционному трубопроводам не отличались более чем на 10%.

8.8. В системах горячего водоснабжения, присоединяемых к закрытым тепловым сетям, потери давления в секционных узлах при расчетном циркуляционном расходе следует принимать 0,03-0,06 МПа (0,3-0,6 кгс/кв.см).

8.9. В системах горячего водоснабжения с непосредственным водоразбором из трубопроводов тепловой сети потери давления в сети трубопроводов следует определять с учетом напора в обратном трубопроводе тепловой сети.

Потери давления в циркуляционном кольце трубопроводов системы при циркуляционном расходе не должны, как правило, превышать 0,02 МПа (0,2 кгс/кв.см).

8.10. В душевых с числом душевых сеток более трех распределительный трубопровод следует, как правило, предусматривать закольцованным.

Одностороннюю подачу горячей воды допускается предусматривать при коллекторном распределении.

8.11. При зонировании систем горячего водоснабжения допускается предусматривать возможность организации в ночное время естественной циркуляции горячей воды в верхней зоне.

В квитанциях за коммунальные услуги появилась новая графа – ГВС. У пользователей она вызвала недоумение, поскольку не все понимают, что это такое и почему нужно вносить платежи по этой строке. Есть и такие собственники квартир, которые вычеркивают графу. Это влечет за собой накопление долга, пени, штрафы и даже судебные разбирательства. Чтобы не доводить дело до крайних мер, нужно знать, что такое ГВС, теплоэнергия ГВС и почему за эти показатели нужно платить.

Что такое ГВС в квитанции?

ГВС – такое обозначение расшифровывается, как горячее водоснабжение. Его цель заключается в обеспечении квартир в многоквартирных домах и иных жилых помещений горячей водой с приемлемой температурой, но ГВС – это не сама горячая вода, а тепловая энергия, которая затрачивается на подогрев воды до приемлемой температуры.

Специалисты разделяют системы горячего водоснабжения на два вида:

  • Центральная система. Здесь вода нагревается на теплостанции. После этого она распределяется в квартиры многоквартирных домов.
  • Автономная система. Она обычно используется в частных домах. Принцип действия такой же, как и в центральной системе, но здесь вода нагревается в котле или бойлере и используется только для нужд одного конкретного помещения.

Обе системы имеют одну цель – обеспечить владельцев жилого помещения горячей водой. В многоквартирных домах обычно используется центральная система, но многие пользователи устанавливают бойлер на случае, если горячую воду отключат, как это ни раз бывало на практике. Автономная система устанавливается там, где нет возможности подключиться к центральному водоснабжению. За ГВС платят только те потребители, которые пользуются центральной системой отопления. Пользователи автономного контура оплачивают коммунальные ресурсы, которые затрачиваются для нагревания теплоносителя – газ или электроэнергия.

Важно! Еще одна в графа в квитанции, связанная с ГВС – это ГВС на ОДН. Расшифровка ОДН – общедомовые нужды. Значит, графа ГВС на ОДН – это расходование энергии на подогрев воды, используемой на общие нужды всех жильцов многоквартирного дома.

К ним относятся:

  • технические работы, которые выполняются перед сезоном отопления;
  • опрессовка системы отопления, проводимая после ремонта;
  • ремонтные работы;
  • отопление мест общего пользования.

Закон о горячей воде

Закон о ГВС был принят в 2013 году. Постановление Правительства за номером 406 гласит, что пользователи центральной системы отопления обязаны осуществлять оплату по двухкомпонентному тарифу. Это говорит о том, что тариф разделили на два элемента:

  • тепловая энергия;
  • холодная вода.

Оборудование для нагрева воды

Оборудованием, осуществляющим нагрев жидкости, является водонагреватель. Его поломка не оказывает влияния на тариф на горячую воду, но стоимость работ за ремонт оборудования обязаны оплатить пользователи, поскольку водонагреватели – это часть имущества владельцев жилья в многоквартирном доме. Соответствующая сумма появится в квитанции за содержание и ремонт имущества.

Важно! К этой платежке следует внимательно относиться собственникам тех квартир, которые не пользуются горячей водой, поскольку в их жилье установлена автономная система отопления. Специалисты ЖКХ не всегда обращают внимание на это, просто распределяя сумму на ремонт водонагревателя между всеми гражданами.

В результате таким собственникам квартир приходится вносить плату за оборудование, к которым они не пользовались. При обнаружении повышения тарифа за ремонт и содержание имущества, необходимо выяснить, с чем это связано и обратиться в управляющую компанию за перерасчетом, если платеж насчитан неправильно.

Компонент «тепловая энергия»

Что это такое – компонент на теплоноситель? Это и есть подогрев холодной воды. На компонент тепловой энергии не устанавливается прибор учета, в отличие от горячей воды. По этой причине нельзя сделать расчет этого показателя по счетчику. Как в таком случае рассчитывается тепловая энергия для ГВС? При подсчете платежа учитываются следующие моменты:

  • тариф, который установлен на ГВС;
  • расходы, затраченные на содержание системы;
  • стоимость потери тепла в контуре;
  • расходы, затраченные на передачу теплоносителя.

Важно! Расчет стоимости горячей воды выполняется с учетом объема израсходованной воды, которая измеряется в 1 кубическом метре.

Размер платы за энергию обычно вычисляется, основываясь на значение показаний общедомового прибора учета горячей воды и количества энергии в горячей воде. Рассчитывается энергия и для каждой отдельной квартиры. Для этого берутся данные потребления воды, которые узнают из показаний счетчика, и умножаются на удельный расход тепловой энергии. Полученные данные умножаются на тариф. Эта цифра и есть тот необходимый взнос, который указывается в квитанции.

Как сделать самостоятельный расчет

Не все пользователи доверяют расчетному центру, поэтому и возникает вопрос, как посчитать стоимость ГВС самостоятельно. Полученный показатель сравнивается с суммой в квитанции и на основании этого делается вывод о правильности начислений.

Чтобы рассчитать стоимость ГВС, необходимо знать тариф на тепловую энергию. На сумму также влияет наличие или отсутствие прибора учета. Если он есть, то берутся показания со счетчика. При отсутствии счетчика берется норматив расхода тепловой энергии, используемой на подогрев воды. Такой нормативный показатель устанавливается энергосберегающая организация.

Если в многоэтажном доме установлен прибор учета расхода энергии и в жилье есть счетчик на горячую воду, то сумма за горячее водоснабжение вычисляется на основании данных общедомового учета и последующего пропорционального распределения теплоносителя по квартирам. При отсутствии счетчика берется норма расхода энергии на 1 куб воды и показания индивидуальных счетчиков.

Жалоба из-за неправильного расчета квитанции

Если после самостоятельного вычисления суммы взносов за ГВС выявлена разница, необходимо обратиться в управляющую компанию за разъяснениями. Если сотрудники организации отказываются давать объяснений по этому поводу, необходимо подать письменную претензию. Ее сотрудники компании не имеют права проигнорировать. Ответ должен поступить в течение 13 рабочих дней.

Важно! Если ответа не поступило или из него не понятно, почему возникла такая ситуация, то гражданин имеет право подать претензию в прокуратуру или исковое заявление в суд. В инстанции будет рассмотрено дело и вынесено соответствующее объективное решение. Можно также обратиться в организации, контролирующие деятельность управляющей компании. Здесь будет рассмотрена жалоба абонента и вынесено соответствующее решение.

Электроэнергия, используемая для подогрева воды, не является бесплатной услугой. Плата за нее взимается на основании Жилищного Кодекса Российской Федерации. Каждый гражданин может самостоятельно вычислить сумму этого платежа и сравнить полученные данные с суммой в квитанции. При возникновении неточности следует обратиться в управляющую компанию. В этом случае разница будет компенсирована, если ошибка будет признана.

2.2 Определение теплопотерь и циркуляционных расходов в подающих трубопроводах системы горячего водоснабжения

Циркуляционный расход горячей воды в системе, л/с:

где>- суммарные теплопотери подающими трубопроводами системы ГВС, кВт;

Разность температур в подающих трубопроводах системы до наиболее удаленной водоразборной точки, принято 10;

Коэффициент разрегулировки циркуляции, принято1

Для системы с переменным сопротивлением циркуляционных стояков величину определяют по подающим трубопроводам и водоразборным стоякам при = 10и = 1

Теплопотери на участках, кВт, определяются по формуле

Где: q - теплопотери 1 м трубопровода, Вт/м, приняты по прил.7

l - длина участка трубопровода, м, принята по чертежу

При расчете теплопотерь участков водоразборных стояков теплопотери полотенцесушителя приняты равными 100 Вт, при этом его длина исключена из длины этажестояка. Для удобства расчет теплопотерь сведен в одну таблицу 2 с гидравлическим расчетом сети.

Определим теплопотери для всей системы в целом. Для удобства принято что стояки, расположенные на плане в зеркальном отражении равны между собой. Тогда теплопотери стояков, расположенных слева от ввода будут равны:

1,328*2+0,509+1,303*2+2,39*2+2,432*2+2,244=15,659 кВт

А стояков, расположенных справа:

1,328*2+(0,509-0,144) +2,39*2+(0,244-0,155) =7,89 кВт

Суммарные теплопотери на дом составят 23,55 кВт.

Определим циркуляционный расход:

Определим расчетный секундный расход горячей воды, л/с, на участках 45 и 44. Для этого определим отношение qh/qcir, для участков 44 и 45 оно соответственно равняется 4,5 и 5,5. По прил.5 коэффициент Kcir=0 в обоих случаях, следовательно, предварительный расчет является окончательным.

Для обеспечения циркуляции предусмотрен циркуляционный насос марки WILO Star-RS 30/7

2.3 Подбор водомера

В соотв. с п.п а) п. 3.4 проверяем условие 1,36м

3. Расчет и проектирование системы канализации

Система канализации предназначена для удаления из здания загрязнений, образующихся в процессе санитарно-гигиенических процедур, хозяйственной деятельности, а также атмосферных и талых вод. Внутренняя канализационная сеть состоит из отводных трубопроводов, стояков, выпусков, вытяжной части, устройств для прочистки. Отводные трубы служат для отвода сточных вод от санитарных приборов и передачи их в стояк. Отводные трубы присоединяют к гидрозатворам санитарных приборов и прокладывают с уклоном в сторону стояка. Стояки предназначены для транспортирования стоков в канализационный выпуск. Они собирают стоки от отводных труб и диаметром должны быть не менее наибольшего диаметра отводной трубы или выпуска прибора, присоединяемого к стояку.

В данном проекте внутриквартирная разводка выполнена из раструбных ПВХ труб диаметром 50 мм, стояки диаметром 100 мм выполнены из чугуна, также соединяемого раструбами. Присоединение к стоякам выполняется с помощью крестовин и тройников. На сети предусмотрены ревизии и прочистки для удаления засоров.

3.1 Определение расчетных расходов канализации

Общий максимальный расчетный расход воды:

Где: - расход воды прибором, принят равным 0,3 л/с в соотв. с прил.4 ; - коэффициент, зависящий от общего числа приборов и вероятности их использования Рtot

Где: - общая норма расхода в час наибольшего водопотребления, л, принято в соответствии с прил.4 равным 20

Число водопотребителей, равное 104*4,2 чел

Число санитарно-технических приборов, принято 416 по заданию

Тогда, произведение N*=416*0,019=7,9, следовательно, =3,493

Полученное значение меньше 8л/с, следовательно, максимальный секундный расход сточных вод:

Где: - расход от санитарно - технического прибора с наибольшим водоотведением, л/с, принят по прил.2 для унитаза со смывным бачком равным 1,6

3.2 Расчет стояков

Расход воды на стояки К1-1, К1-2, К1-5, К1-6 будет одинаков, так как к этим стоякам присоединяется равное число приборов, к каждому по 52 прибора.

Принимаем диаметр стояка 100 мм, диаметр поэтажного отвода100 мм, угол поэтажного отвода 90°. Максимальная пропускная способность 3,2 л/с. Расчетный расход 2,95 л/с. Следовательно, стояк работает в нормальном гидравлическом режиме.

Расход воды на стояки К1-3, К1-4 будет одинаков, так как к этим стоякам присоединяется равное число приборов, к каждому по 104 прибора.

В квитанциях за коммунальные услуги появилась новая графа – ГВС. У пользователей она вызвала недоумение, поскольку не все понимают, что это такое и почему нужно вносить платежи по этой строке. Есть и такие собственники квартир, которые вычеркивают графу. Это влечет за собой накопление долга, пени, штрафы и даже судебные разбирательства. Чтобы не доводить дело до крайних мер, нужно знать, что такое ГВС, теплоэнергия ГВС и почему за эти показатели нужно платить.

Что такое ГВС в квитанции?

ГВС – такое обозначение расшифровывается, как горячее водоснабжение. Его цель заключается в обеспечении квартир в многоквартирных домах и иных жилых помещений горячей водой с приемлемой температурой, но ГВС – это не сама горячая вода, а тепловая энергия, которая затрачивается на подогрев воды до приемлемой температуры.

Специалисты разделяют системы горячего водоснабжения на два вида:

  • Центральная система. Здесь вода нагревается на теплостанции. После этого она распределяется в квартиры многоквартирных домов.
  • Автономная система. Она обычно используется в частных домах. Принцип действия такой же, как и в центральной системе, но здесь вода нагревается в котле или бойлере и используется только для нужд одного конкретного помещения.


Обе системы имеют одну цель – обеспечить владельцев жилого помещения горячей водой. В многоквартирных домах обычно используется центральная система, но многие пользователи устанавливают бойлер на случае, если горячую воду отключат, как это ни раз бывало на практике. Автономная система устанавливается там, где нет возможности подключиться к центральному водоснабжению. За ГВС платят только те потребители, которые пользуются центральной системой отопления. Пользователи автономного контура оплачивают коммунальные ресурсы, которые затрачиваются для нагревания теплоносителя – газ или электроэнергия.

Важно! Еще одна в графа в квитанции, связанная с ГВС – это ГВС на ОДН. Расшифровка ОДН – общедомовые нужды. Значит, графа ГВС на ОДН – это расходование энергии на подогрев воды, используемой на общие нужды всех жильцов многоквартирного дома.

К ним относятся:

  • технические работы, которые выполняются перед сезоном отопления;
  • опрессовка системы отопления, проводимая после ремонта;
  • ремонтные работы;
  • отопление мест общего пользования.

Закон о горячей воде

Закон о ГВС был принят в 2013 году. Постановление Правительства за номером 406 гласит, что пользователи центральной системы отопления обязаны осуществлять оплату по двухкомпонентному тарифу. Это говорит о том, что тариф разделили на два элемента:

  • тепловая энергия;
  • холодная вода.

Оборудование для нагрева воды

Оборудованием, осуществляющим нагрев жидкости, является водонагреватель. Его поломка не оказывает влияния на тариф на горячую воду, но стоимость работ за ремонт оборудования обязаны оплатить пользователи, поскольку водонагреватели – это часть имущества владельцев жилья в многоквартирном доме. Соответствующая сумма появится в квитанции за содержание и ремонт имущества.

Важно! К этой платежке следует внимательно относиться собственникам тех квартир, которые не пользуются горячей водой, поскольку в их жилье установлена автономная система отопления. Специалисты ЖКХ не всегда обращают внимание на это, просто распределяя сумму на ремонт водонагревателя между всеми гражданами.

В результате таким собственникам квартир приходится вносить плату за оборудование, к которым они не пользовались. При обнаружении повышения тарифа за ремонт и содержание имущества, необходимо выяснить, с чем это связано и обратиться в управляющую компанию за перерасчетом, если платеж насчитан неправильно.

Компонент «тепловая энергия»

Что это такое – компонент на теплоноситель? Это и есть подогрев холодной воды. На компонент тепловой энергии не устанавливается прибор учета, в отличие от горячей воды. По этой причине нельзя сделать расчет этого показателя по счетчику. Как в таком случае рассчитывается тепловая энергия для ГВС? При подсчете платежа учитываются следующие моменты:

  • тариф, который установлен на ГВС;
  • расходы, затраченные на содержание системы;
  • стоимость потери тепла в контуре;
  • расходы, затраченные на передачу теплоносителя.

Важно! Расчет стоимости горячей воды выполняется с учетом объема израсходованной воды, которая измеряется в 1 кубическом метре.

Размер платы за энергию обычно вычисляется, основываясь на значение показаний общедомового прибора учета горячей воды и количества энергии в горячей воде. Рассчитывается энергия и для каждой отдельной квартиры. Для этого берутся данные потребления воды, которые узнают из показаний счетчика, и умножаются на удельный расход тепловой энергии. Полученные данные умножаются на тариф. Эта цифра и есть тот необходимый взнос, который указывается в квитанции.

Как сделать самостоятельный расчет

Не все пользователи доверяют расчетному центру, поэтому и возникает вопрос, как посчитать стоимость ГВС самостоятельно. Полученный показатель сравнивается с суммой в квитанции и на основании этого делается вывод о правильности начислений.

Чтобы рассчитать стоимость ГВС, необходимо знать тариф на тепловую энергию. На сумму также влияет наличие или отсутствие прибора учета. Если он есть, то берутся показания со счетчика. При отсутствии счетчика берется норматив расхода тепловой энергии, используемой на подогрев воды. Такой нормативный показатель устанавливается энергосберегающая организация.

Если в многоэтажном доме установлен прибор учета расхода энергии и в жилье есть счетчик на горячую воду, то сумма за горячее водоснабжение вычисляется на основании данных общедомового учета и последующего пропорционального распределения теплоносителя по квартирам. При отсутствии счетчика берется норма расхода энергии на 1 куб воды и показания индивидуальных счетчиков.

Жалоба из-за неправильного расчета квитанции

Если после самостоятельного вычисления суммы взносов за ГВС выявлена разница, необходимо обратиться в управляющую компанию за разъяснениями. Если сотрудники организации отказываются давать объяснений по этому поводу, необходимо подать письменную претензию. Ее сотрудники компании не имеют права проигнорировать. Ответ должен поступить в течение 13 рабочих дней.

Важно! Если ответа не поступило или из него не понятно, почему возникла такая ситуация, то гражданин имеет право подать претензию в прокуратуру или исковое заявление в суд. В инстанции будет рассмотрено дело и вынесено соответствующее объективное решение. Можно также обратиться в организации, контролирующие деятельность управляющей компании. Здесь будет рассмотрена жалоба абонента и вынесено соответствующее решение.

Электроэнергия, используемая для подогрева воды, не является бесплатной услугой. Плата за нее взимается на основании Жилищного Кодекса Российской Федерации. Каждый гражданин может самостоятельно вычислить сумму этого платежа и сравнить полученные данные с суммой в квитанции. При возникновении неточности следует обратиться в управляющую компанию. В этом случае разница будет компенсирована, если ошибка будет признана.

Тепловые потери DQ, (Вт), на расчетном участке подающего трубопровода или стояка определяются по нормативным удельным потерям тепла или расчетом по формуле:

где К - коэффициент теплопередачи изолированного трубопровода, К=11,6 Вт/(м 2 -°С); t г ср - средняя температура воды в системе, t г ср,=(t н +t к)/2, °С; t н , - температура на выходе из подогревателя (температура горячей воды на вво­де в здание), °С; t к - температура у наиболее удаленного водоразборного прибора, °С; h - КПД тепловой изоляции (0,6); / - длина участка трубопровода, м; d H - наружный диаметр трубопровода, м; t 0 - температура окружающей среды, °С.

Температуру воды у наиболее удаленного водоразборного прибора t к следует принимать на 5 °С ниже температуры воды на вводе в здание или на выходе из подогревателя.

Температуру окружающей среды t 0 при прокладке трубопроводов в бороздах, вертикальных каналах, коммуникационных шахтах и шахтах санитарно-технических кабин следует принимать равной 23 °С, в ванных комнатах - 25 °С, в кухнях и туалетных комнатах жилых зданий, общежитии и гостиниц- 21 °С .

Обогрев ванных комнат осуществляется полотенцесушителями, поэтому к теплопотерям стояка добавляют потери теплоты полотенцесушителями в размере 100п (Вт), где 100 Вт - усредненная теплоотдача одним полотенцесушителем, п - количество полотенцесушителей, присоединенных к стояку.

При определении циркуляционных расходов воды потери теплоты циркуляционными трубопроводами не учитываются. Однако при расчете систем горячего водоснабжения с полотенцесушителями на циркуляционных стояках целесообразно к сумме потерь теплоты подающими теплопроводами добавлять теплоотдачу полотенцесушителей. Это увеличивает циркуляционный расход воды, улучшает прогрев полотенцесушителей и отопление ванных комнат. Результаты расчета заносят в таблицу.

l, м D, м t 0 , о С t г ср -t 0 , о С 1-n q, Вт/м DQ, Вт åDQ, Вт Примечание
Стояк 6
1-3 0,840 0,0213 21,00 36,50 0,30 8,4996 7,139715 7,139715
2-3 1,045 0,0268 21,00 36,50 0,30 10,6944 11,17566 18,31537
3-4 2,9 0,0268 21,00 36,50 0,30 10,6944 31,01379 49,32916
4-5 2,9 0,0335 21,00 36,50 0,30 13,3680 38,76723 88,09639 åDQ=497,899+900=
5-6 2,9 0,0423 21,00 36,50 0,30 16,8796 48,95086 137,0473 =1397,899 Вт
6-7 2,9 0,0423 21,00 36,50 0,30 16,8796 48,95086 185,9981
7-8 2,9 0,0423 21,00 36,50 0,30 16,8796 48,95086 234,9490
8-9 2,9 0,0423 21,00 36,50 0,30 16,8796 48,95086 283,8998
9-10 2,9 0,0423 21,00 36,50 0,30 16,8796 48,95086 332,8507
10-11 2,9 0,0423 21,00 36,50 0,30 16,8796 48,95086 381,8016
11-12 4,214 0,048 5,00 52,50 0,30 27,5505 116,0979 497,8994
12-13 4,534 0,048 5,00 52,50 0,30 27,5505 124,9140 622,8134
13-14 13,156 0,048 5,00 52,50 0,30 27,5505 362,4545 985,2680
14-15 4,534 0,060 5,00 52,50 0,30 34,4381 156,1425 1141,4105
15-Ввод 6,512 0,060 5,00 52,50 0,30 34,4381 224,2612 1365,6716
Стояк 1
1а-3а 0,840 0,0213 21,00 36,50 0,30 8,4996 7,139715 7,139715 åDQ=407,504+900= =1307,504 Вт
2а-3а 1,045 0,0268 21,00 36,50 0,30 10,6944 11,17566 18,31537
3а-4а 2,9 0,0268 21,00 36,50 0,30 10,6944 31,01379 49,32916
4а-5а 2,9 0,0268 21,00 36,50 0,30 10,6944 31,01379 80,34294
5а-6а 2,9 0,0268 21,00 36,50 0,30 10,6944 31,01379 111,3567
6а-7а 2,9 0,0335 21,00 36,50 0,30 13,3680 38,76723 150,1240
7а-8а 2,9 0,0335 21,00 36,50 0,30 13,3680 38,76723 188,8912
8а-9а 2,9 0,0335 21,00 36,50 0,30 13,3680 38,76723 227,6584
9а-10а 2,9 0,0335 21,00 36,50 0,30 13,3680 38,76723 266,4257
10а-11а 2,9 0,0335 21,00 36,50 0,30 13,3680 38,76723 305,1929
11а-15 4,214 0,0423 5,00 52,50 0,30 24,2789 102,3112 407,5041
15-Ввод 6,512 0,060 5,00 52,50 0,30 34,4381 224,2612 631,7652

åQп=5591,598 Вт

Гидравлический расчет циркуляционных трубопроводов

Циркуляционный расход воды в системе горячего водоснабжения G ц (кг/ч), распределяется пропорционально суммарным тепловым потерям:

где åQ ц - суммарные теплопотери всеми подающими трубопроводами, Вт; Dt - перепад температуры воды в подающих трубопроводах системы горячего водоснабжения, Dt=t г -t к =5°C; с - теплоемкость воды, Дж/(кг°С).

Циркуляционные расходы воды на магистральных участках системы горячего водоснабжения состоят из циркуляционных расходов участков и стояков, которые находятся впереди по ходу движения воды.

Стояк 1:


Участок 2


Стояк 2:


Участок 3:


Стояк 3:

Участок 4:


Гидравлический расчет циркуляционных трубопроводов открытой системы горячего водоснабжения.

l, м G, л/с D, мм w, м/с R, Па/м K m DP, Па åDP, Па
Циркуляционное кольцо через стояк 1
15-16 6,512 0,267093 0,040 0,21367 44,719 0,2 1954,602 1954,602
11-15 4,214 0,073767 0,020 0,2313 123,301 0,2 2293,472 4248,074
1-11 0,073767 0,015 0,4326 579,868 0,5 399529,12 403777,20
1’-11’ 0,073767 0,015 0,4326 579,868 0,5 399529,12 803306,32
11’-15’ 4,214 0,073767 0,020 0,2313 123,301 0,2 2293,472 805599,79
15’-16’ 6,512 0,267093 0,040 0,21367 44,719 0,2 1954,602 807554,39
Циркуляционное кольцо через стояк 2
15-16 6,512 0,267093 0,040 0,21367 44,719 0,2 1954,602 1954,602
14-15 4,534 0,181492 0,032 0,1915 44,4186 0,2 953,399 2908,001
11-14 4,214 0,073767 0,020 0,2313 123,301 0,2 2293,472 5201,473
1-11 0,073767 0,015 0,4326 579,868 0,5 399529,12 404730,59
1’-11’ 0,073767 0,015 0,4326 579,868 0,5 399529,12 804259,72
11’-14’ 4,214 0,073767 0,020 0,2313 123,301 0,2 2293,472 806553,19
14’-15’ 4,534 0,181492 0,032 0,1915 44,4186 0,2 953,399 807506,59
15’-16’ 6,512 0,267093 0,040 0,21367 44,719 0,2 1954,602 809461,19
Циркуляционное кольцо через стояк 3
15-16 6,512 0,267093 0,040 0,21367 44,719 0,2 1954,602 1954,602
14-15 4,534 0,181492 0,032 0,1915 44,4186 0,2 953,399 2908,001
13-14 13,156 0,099485 0,020 0,3085 209,147 0,2 36749,54 39657,542
11-13 4,214 0,073767 0,020 0,2313 123,301 0,2 2293,472 41951,014
1-11 0,073767 0,015 0,4326 579,868 0,5 399529,12 441480,07
1’-11’ 0,073767 0,015 0,4326 579,868 0,5 399529,12 841009,12
11’-13’ 4,214 0,073767 0,020 0,2313 123,301 0,2 2293,472 843320,59
13’-14’ 13,156 0,099485 0,020 0,3085 209,147 0,2 36749,54 880052,13
14’-15’ 4,534 0,181492 0,032 0,1915 44,4186 0,2 953,399 881005,53
15’-16’ 6,512 0,267093 0,040 0,21367 44,719 0,2 1954,602 882960,13
Циркуляционное кольцо через стояк 4
15-16 6,512 0,267093 0,040 0,21367 44,719 0,2 1954,602 1954,602
14-15 4,534 0,181492 0,032 0,1915 44,4186 0,2 953,399 2908,001
13-14 13,156 0,099485 0,020 0,3085 209,147 0,2 36749,54 39657,542
12-13 4,534 0,006592 0,020 0,0201 11,2013 0.2 240,4178 39897,960
11-12 4,214 0,073767 0,020 0,2313 123,301 0,2 2293,472 42191,432
1-11 0,073767 0,015 0,4326 579,868 0,5 399529,12 441720,48
1’-11’ 0,073767 0,015 0,4326 579,868 0,5 399529,12 841249,54
11’-12’ 4,214 0,073767 0,020 0,2313 123,301 0,2 2293,472 843543,01
12’-13’ 4,534 0,006592 0,020 0,0201 11,2013 0.2 240,4178 843783,43
13’-14’ 13,156 0,099485 0,020 0,3085 209,147 0,2 36749,54 880532,87
14’-15’ 4,534 0,181492 0,032 0,1915 44,4186 0,2 953,399 881486,37
15’-16’ 6,512 0,267093 0,040 0,21367 44,719 0,2 1954,602 883440,97

Определяем невязку потерь давления по двум направлениям через ближний и дальний стояки по формуле:DH сч - потери напора в водомере, м; H св - располагаемый свободный напор у смесителя ванны (3м); DH см - потери в смесителе (5 м); Н г - геометрическая высота подъема воды от оси трубопровода на вводе до оси наиболее высоко расположенного водоразборного прибора (24,2 м).

Водомер подбирается по расходу воды на вводе G и диаметре условного прохода D y по . Потери напора в водомере DH сч (м), определяются по формуле:

где S - гидравлическое сопротивление водомера, принимаемое по , (0,32 м/(л/с 2)).Принимаем водомер ВК-20.

Избыточный напор на вводе:


Список используемой литературы.

1. Строительные нормы и правила. СНиП 3.05.01-85. Внутренние санитарно-технические системы. М: Стройиздат, 1986.

2. Строительные нормы и правила. СНиП 2.04.01-85. Внутренний водопровод и канализация зданий. М.: Стройиздат, 1986.

3. Строительные нормы и правила. СНиП II-34-76. Горячее водоснабжение. М.: Стройиздат, 1976.

4. Справочник проектировщика. Отопление, водопровод, канализация/ Под ред. И. Г. Староверова. - М.: Стройиздат, 1976г. ч.1.

5. Справочник по теплоснабжению и вентиляции/ Р. В. Щекин, С. М. Кореневский, Г. Е. Бем и др. - Киев: Будiвельник, 1976. Ч. 1.

6. Теплоснабжение: Учебник для вузов/ А. А. Ионин, Б. М. Хлыбов и др.; Под ред. А. А. Ионина. М.: Стройиздат, 1982.

7. Теплоснабжение (курсовое проектирование): Учеб.пособие для вузов по спец. "Теплогазоснабжение и вентиляция"/ В. М. Копко, Н. К. Зайцева и др.; Под ред. В. М. Копко. - Мн.: Высш. шк., 1985.

8. Теплоснабжение: Учебное пособие для студентов вузов/ В. Е. Козин, Т. А. Левина, А. П. Марков и др. - М.: Высш. школа, 1980.

9. Зингер Н. М. Гидравлические и тепловые режимы теплофикационных сис­тем. - М.: Энергоатомиздат, 1986.

10. Соколов Е.Я. Теплофикация и тепловые сети. - М.: Издательство МЭИ, 2001.

11. Наладка и эксплуатация водяных тепловых сетей: Справочник/ В. И. Манюк, Я. И. Каплинский, Э. Б. Хиж и др. - М.: Стройиздат, 1988.

Для любых предложений по сайту: [email protected]