Тепловая защита зданий и сооружений уч. пособие

Системы отопления и вентиляции должны обеспечивать допустимые условия микроклимата и воздушной среды помещений. Для этого необходимо сохранение равновесия между тепловыми потерями здания и теплопритоком. Условие теплового равновесия здания может быть выражено в виде равенства

$$Q=Q_т+Q_и=Q_0+Q_{тв},$$

где $Q$ –суммарные тепловые потери здания; $Q_т$ – теплопотери теплопередачей через наружные ограждения; $Q_и$ – теплопотери инфильтрацией из-за поступления в помещение через неплотности наружных ограждений холодного воздуха; $Q_0$ – подвод теплоты в здание через отопительную систему; $Q_{тв}$ – внутренние тепловыделения.

Тепловые потери здания в основном зависят от первого слагаемого $Q_т$. Поэтому для удобства расчета можно тепловые потери здания представить так:

$$Q=Q_т·(1+μ),$$

где $μ$ – коэффициент инфильтрации, представляющий собой отношение теплопотерь инфильтрацией к теплопотерям теплопередачей через наружные ограждения.

Источником внутренних тепловыделений $Q_{тв}$, в жилых зданиях являются обычно люди, приборы для приготовления пищи (газовые, электрические и другие плиты), осветительные приборы. Эти тепловыделения носят в значительной мере случайный характер и не поддаются никакому регулированию во времени.

Кроме того, тепловыделения не распределяются равномерно по зданию. В помещениях с большой плотностью населения внутренние тепловыделения относительно велики, а в помещениях с малой плотностью они незначительны.

Для обеспечения в жилых районах нормального температурного режима во всех отапливаемых помещениях обычно устанавливают гидравлический и температурный режим тепловой сети по наиболее невыгодным условиям, т.е. по режиму отопления помещений с нулевыми тепловыделениями.

Приведенное сопротивление теплопередаче светопрозрачных конструкций (окон, витражей балконных дверей, фонарей) принимается по результатам испытаний в аккредитованной лаборатории; при отсутствии таких данных оно оценивается по методике из приложения К в .

Приведенное сопротивление теплопередаче ограждающих конструкций с вентилируемыми воздушными прослойками следует рассчитывать в соответствии с приложением К в СП 50.13330.2012 Тепловая защита зданий (СНиП 23.02.2003) .

Расчет удельной теплозащитной характеристики здания оформляется в виде таблицы, которая должна содержать следующие сведения:

  • Наименование каждого фрагмента, составляющего оболочку здания;
  • Площадь каждого фрагмента;
  • Приведенное сопротивление теплопередаче каждого фрагмента со ссылкой на расчет (согласно приложению Е в СП 50.13330.2012 Тепловая защита зданий (СНиП 23.02.2003));
  • Коэффициент, учитывающий отличие внутренней или наружной температуры у фрагмента конструкции от принятых в расчете ГСОП.

В следующей таблице показана форма таблицы для расчета удельной теплозащитной характеристики здания

Удельную вентиляционную характеристику здания, Вт / (м 3 ∙°С), следует определять по формуле

$$k_{вент}=0.28·c·n_в·β_v·ρ_в^{вент}·(1-k_{эф}),$$

где $c$ – удельная теплоемкость воздуха, равная 1 кДж/(кг·°С); $β_v$ – коэффициент снижения объема воздуха в здании, учитывающий наличие внутренних ограждающих конструкций. При отсутствии данных принимать $β_v=0.85$; $ρ_в^{вент}$ – средняя плотность приточного воздуха за отопительный период, расчитываемая по формуле, кг/м 3:

$$ρ_в^{вент}=\frac{353}{273+t_{от}};$$

$n_в$ – средняя кратность воздухообмена здания за отопительный период, ч –1 ; $k_{эф}$ – коэффициент эффективности рекуператора.

Коэффициент эффективности рекуператора, отличен от нуля в том случае, если средняя воздухопроницаемость квартир жилых и помещений общественных зданий (при закрытых приточно-вытяжных вентиляционных отверстиях) обеспечивает в период испытаний воздухообмен кратностью $n_{50}$, ч –1 , при разности давлений 50 Па наружного и внутреннего воздуха при вентиляции с механическим побуждением $n_{50} ≤ 2$ ч –1 .

Кратность воздухообмена зданий и помещений при разности давлений 50 Па и их среднюю воздухопроницаемость определяют по ГОСТ 31167.

Средняя кратность воздухообмена здания за отопительный период, рассчитывается по суммарному воздухообмену за счет вентиляции и инфильтрации по формуле, ч –1:

$$n_в=\frac{\frac{L_{вент}·n_{вент}}{168} + \frac{G_{инф}·n_{инф}}{168·ρ_в^{вент}}}{β_v·V_{от}},$$

где $L_{вент}$ – количество приточного воздуха в здание при неорганизованном притоке либо нормируемое значение при механической вентиляции, м 3 / ч, равное для: а) жилых зданий с расчетной заселенностью квартир менее 20 м 2 общей площади на человека $3·A_ж$, б) других жилых зданий $0.35·h_{эт}(A_ж)$, но не менее $30·m$; где $m$ – расчетное число жителей в здании, в) общественных и административных зданий принимают условно: для административных зданий, офисов, складов и супермаркетов $4·A_р$, для магазинов шаговой доступности, учреждений здравоохранения, комбинатов бытового обслуживания, спортивных арен, музеев и выставок $5·A_р$, для детских дошкольных учреждений, школ, среднетехнических и высших учебных заведений $7·A_р$, для физкультурно-оздоровительных и культурно-досуговых комплексов, ресторанов, кафе, вокзалов $10·A_р$; $A_ж$, $A_р$ – для жилых зданий – площадь жилых помещений, к которым относятся спальни, детские, гостиные, кабинеты, библиотеки, столовые, кухни-столовые; для общественных и административных зданий – расчетная площадь, определяемая согласно СП 118.13330 как сумма площадей всех помещений, за исключением коридоров, тамбуров, переходов, лестничных клеток, лифтовых шахт, внутренних открытых лестниц и пандусов, а также помещений, предназначенных для размещения инженерного оборудования и сетей, м 2 ; $h_{эт}$ – высота этажа от пола до потолка, м; $n_{вент}$ – число часов работы механической вентиляции в течение недели; 168 – число часов в неделе; $G_{инф}$ – количество инфильтрующегося воздуха в здание через ограждающие конструкции, кг/ч: для жилых зданий – воздуха, поступающего в лестничные клетки в течение суток отопительного периода, для общественных зданий – воздуха, поступающего через неплотности светопрозрачных конструкций и дверей, допускается принимать для общественных зданий в нерабочее время в зависимости от этажности здания: до трех этажей – равным $0.1·β_v·V_{общ}$, от четырех до девяти этажей $0.15·β_v·V_{общ}$, выше девяти этажей $0.2·β_v·V_{общ}$, где $V_{общ}$ – отапливаемый объем общественной части здания; $n_{инф}$ – число часов учета инфильтрации в течение недели, ч, равное 168 для зданий с сбалансированной приточно-вытяжной вентиляцией и (168 – $n_{вент}$) для зданий, в помещениях которых поддерживается подпор воздуха во время действия приточной механической вентиляции; $V_{от}$ – отапливаемый объем здания, равный объему, ограниченному внутренними поверхностями наружных ограждений зданий, м 3 ;

В случаях, когда здание состоит из нескольких зон с различным воздухообменом, средние кратности воздухообмена находятся для каждой зоны в отдельности (зоны, на которые разделено здание, должно составлять весь отапливаемый объем). Все полученные средние кратности воздухообмена суммируются и суммарный коэффициент подставляется в формулу для расчета удельной вентиляционной характеристики здания.

Количество инфильтрующегося воздуха, поступающего в лестничную клетку жилого здания или в помещения общественного здания через неплотности заполнений проемов, полагая, что все они находятся на наветренной стороне, следует определять по формуле:

$$G_{инф}=\left(\frac{А_{ок}}{R_{и,ок}^{тр}}\right)·\left(\frac{Δp_{ок}}{10}\right)^{\frac{2}{3}}+\left(\frac{А_{дв}}{R_{и,дв}^{тр}}\right)·\left(\frac{Δp_{дв}}{10}\right)^{\frac{1}{2}}$$

где $А_{ок}$ и $А_{дв}$ – соответственно суммарная площадь окон, балконных дверей и входных наружных дверей, м 2 ; $R_{и,ок}^{тр}$ и $R_{и,дв}^{тр}$ – соответственно требуемое сопротивление воздухопроницанию окон и балконных дверей и входных наружных дверей, (м 2 ·ч)/кг; $Δp_{ок}$ и $Δp_{дв}$ – соответственно расчетная разность давлений наружного и внутреннего воздуха, Па, для окон и балконных дверей и входных наружных дверей, определяют по формуле:

$$Δp=0.55·H·(γ_н-γ_в)+0.03·γ_н·v^2,$$

для окон и балконных дверей с заменой в ней величины 0.55 на 0.28 и с вычислением удельного веса по формуле:

$$γ=\frac{3463}{273+t},$$

где $γ_н$, $γ_в$ – удельный вес соответственно наружного и внутреннего воздуха, Н / м 3 ; t – температура воздуха: внутреннего (для определения $γ_в$) – принимается согласно оптимальным параметрам по ГОСТ 12.1.005, ГОСТ 30494 и СанПиН 2.1.2.2645; наружного (для определения $γ_н$) – принимается равной средней температуре наиболее холодной пятидневки обеспеченностью 0.92 по СП 131.13330; $v$ – максимальная из средних скоростей ветра по румбам за январь, повторяемость которых составляет 16% и более, принимаемая по СП 131.13330.

Удельную характеристику бытовых тепловыделений здания, Вт/(м 3 ·°С), следует определять по формуле:

$$k_{быт}=\frac{q_{быт}·A_ж}{V_{быт}·(t_в-t_{от})},$$

где $q_{быт}$ – величина бытовых тепловыделений на 1 м 2 площади жилых помещений или расчетной площади общественного здания, Вт/м 2 , принимаемая для:

  • жилых зданий с расчетной заселенностью квартир менее 20 м 2 общей площади на человека $q_{быт}=17$ Вт/м 2 ;
  • жилых зданий с расчетной заселенностью квартир 45 м 2 общей площади и более на человека $q_{быт}=10$ Вт/м 2 ;
  • других жилых зданий – в зависимости от расчетной заселенности квартир по интерполяции величины $q_{быт}$ между 17 и 10 Вт/м 2 ;
  • для общественных и административных зданий бытовые тепловыделения учитываются по расчетному числу людей (90 Вт/чел.), находящихся в здании, освещения (по установочной мощности) и оргтехники (10 Вт/м 2) с учетом рабочих часов в неделю.

Удельную характеристику теплопоступлений в здание от солнечной радиации, Вт/(м ·°С), следует определять по формуле:

$$k_{рад}={11.6·Q_{рад}^{год}}{V_{от}·ГСОП},$$

где $Q_{рад}^{год}$ – теплопоступления через окна и фонари от солнечной радиации в течение отопительного периода, МДж/год, для четырех фасадов зданий, ориентированных по четырем направлениям, определяемые по формуле:

$$Q_{рад}^{год}=τ_{1ок}·τ_{2ок}·(A_{ок1}·I_1+A_{ок2}·I_2+A_{ок3}·I_3+A_{ок4}·I_4)+τ_{1фон}·τ_{2фон}·A_{фон}·I_{гор},$$

где $τ_{1ок}$, $τ_{1фон}$ – коэффициенты относительного проникания солнечной радиации для светопропускающих заполнений соответственно окон и зенитных фонарей, принимаемые по паспортным данным соответствующих светопропускающих изделий; при отсутствии данных следует принимать по своду правил; мансардные окна с углом наклона заполнений к горизонту 45° и более следует считать как вертикальные окна, с углом наклона менее 45° – как зенитные фонари; $τ_{2ок}$, $τ_{2фон}$ – коэффициенты, учитывающие затенение светового проема соответственно окон и зенитных фонарей непрозрачными элементами заполнения, принимаемые по проектным данным; при отсутствии данных следует принимать по своду правил; $A_{ок1}$, $A_{ок2}$, $A_{ок3}$, $A_{ок4}$ – площадь светопроемов фасадов здания (глухая часть балконных дверей исключается), соответственно ориентированных по четырем направлениям, м 2 ; $A_{фон}$ - площадь светопроемов зенитных фонарей здания, м 2 ; $I_1$, $I_2$, $I_3$, $I_4$ – средняя за отопительный период величина солнечной радиации на вертикальные поверхности при действительных условиях облачности, соответственно ориентированная по четырем фасадам здания, МДж/(м 2 ·год), определяется по методике свода правил ТСН 23-304-99 и СП 23-101-2004; $I_{гор}$ – средняя за отопительный период величина солнечной радиации на горизонтальную поверхность при действительных условиях облачности, МДж/(м 2 ·год), определяется по своду правил ТСН 23-304-99 и СП 23-101-2004.

Удельный расход тепловой энергии на отопление и вентиляцию здания за отопительный период, кВт·ч/(м 3 ·год) следует определять по формуле:

$$q=0.024·ГСОП·q_{от}^р.$$

Расход тепловой энергии на отопление и вентиляцию здания за отопительный период, кВт·ч/год, следует определять по формуле:

$$Q_{от}^{год}=0.024·ГСОП·V_{от}·q_{от}^р.$$

На основе данных показателей для каждого здания разрабатывается энергетический паспорт. Энергетический паспорт проекта здания: документ, содержащий энергетические, теплотехнические и геометрические характеристики как существующих зданий, так и проектов зданий и их ограждающих конструкций, и устанавливающий соответствие их требованиям нормативных документов и класс энергетической эффективности.

Энергетический паспорт проекта здания разрабатывается в целях обеспечения системы мониторинга расхода тепловой энергии на отопление и вентиляцию зданием, что подразумевает установление соответствия теплозащитных и энергетических характеристик здания нормируемым показателям, определенным в настоящих нормах и (или) требованиям энергетической эффективности объектов капитального строительства, определяемых федеральным законодательством.

Энергетический паспорт здания составляется согласно Приложению Д. Форма для заполнения энергетического паспорта проекта здания в СП 50.13330.2012 Тепловая защита зданий (СНиП 23.02.2003) .

Системы отопления должны обеспечивать равномерное нагревание воздуха в помещениях в течение всего отопительного периода, не создавать запахи, не загрязнять воздух помещений вредными веществами, выделяемыми в процессе эксплуатации, не создавать дополнительного шума, должны быть доступными для текущего ремонта и обслуживания.

Нагревательные приборы должны быть легко доступны для уборки. При водяном отоплении температура поверхности нагревательных приборов не должна превышать 90°С. Для приборов с температурой нагревательной поверхности более 75°С необходимо предусматривать защитные ограждения.

Естественная вентиляция жилых помещений должна осуществляться путем притока воздуха через форточки, фрамуги, либо через специальные отверстия в оконных створках и вентиляционные каналы. Вытяжные отверстия каналов должны предусматриваться на кухнях, в ванных комнатах, туалетах и сушильных шкафах.

Отопительная нагрузка имеет, как правило, круглосуточный характер. При неизменных наружной температуре, скорости ветра и облачности отопительная нагрузка жилых зданий практически постоянна. Отопительная нагрузка общественных зданий и промышленных предприятий имеет непостоянный суточный, а часто и непостоянный недельный график, когда в целях экономии теплоты искусственно снижают подачу теплоты на отопление в нерабочие часы (ночной период и выходные дни).

Значительно более резко изменяется как в течение суток, так и по дням недели вентиляционная нагрузка, так как в нерабочие часы промышленных предприятий и учреждений вентиляция, как правило, не работает.

Описание:

В соответствии с последним СНиП «Тепловая защита зданий» для любого проекта обязательным является раздел «Энергоэффективность». Основная цель раздела – доказать, что удельное теплопотребление на отопление и вентиляцию здания ниже нормативной величины.

Расчет солнечной радиации в зимнее время

Поток суммарной солнечной радиации, приходящей за отопительный период на горизонтальную и вертикальные поверхности при действительных условиях облачности, кВт ч/м 2 (МДж/м 2)

Поток суммарной солнечной радиации, приходящей за каждый месяц отопительного периода на горизонтальную и вертикальные поверхности при действительных условиях облачности, кВт ч/м 2 (МДж/м 2)

В результате проделанной работы получены данные об интенсивности суммарной (прямой и рассеянной) солнечной радиации, падающей на различно ориентированные вертикальные поверхности для 18 городов России. Эти данные могут быть использованы в реальном проектировании.

Литература

1. СНиП 23–02–2003 «Тепловая защита зданий». – М. : Госстрой России, ФГУП ЦПП, 2004.

2. Научно-прикладной справочник по климату СССР. Ч. 1–6. Вып. 1–34. – СПб. : Гидрометеоиздат, 1989–1998.

3. СП 23–101–2004 «Проектирование тепловой защиты зданий». – М. : ФГУП ЦПП, 2004.

4. МГСН 2.01–99 «Энергосбережение в зданиях. Нормативы по теплозащите и тепловодоэлектроснабжению». – М. : ГУП «НИАЦ», 1999.

5. СНиП 23–01–99* «Строительная климатология». – М. : Госстрой России, ГУП ЦПП, 2003.

6. Строительная климатология: Справочное пособие к СНиП. – М. : Стройиздат, 1990.

(определение толщины утепляющего слоя чердачного

перекрытия и покрытия)
А. Исходные данные

Зона влажности – нормальная .

z ht = 229 сут .

Средняя расчетная температура отопительного периода t ht = –5,9 ºС .

Температура холодной пятидневки t ext = –35 °С .

t int = + 21 °С .

Относительная влажность воздуха: = 55 %.

Расчетная температура воздуха в чердаке t int g = +15 С .

Коэффициент теплоотдачи внутренней поверхности чердачного перекрытия
= 8,7 Вт/м 2 ·С .

Коэффициент теплоотдачи наружной поверхности чердачного перекрытия
= 12 Вт/м 2 ·°С .

Коэффициент теплоотдачи внутренней поверхности покрытия теплого чердака
= 9,9 Вт/м 2 ·°С .

Коэффициент теплоотдачи наружной поверхности покрытия тёплого чердака
= 23 Вт/м 2 ·°С .
Тип здания – 9-этажный жилой дом. Кухни в квартирах оборудованы газовыми плитами. Высота чердачного пространства – 2,0 м. Площади покрытия (кровли) А g . c = 367,0 м 2 , перекрытия теплого чердака А g . f = 367,0 м 2 , наружных стен чердака А g . w = 108,2 м 2 .

В теплом чердаке размещена верхняя разводка труб систем отопления и водоснабжения. Расчетные температуры системы отопления – 95 °С, горячего водоснабжения – 60 °С.

Диаметр труб отопления 50 мм при длине 55 м, труб горячего водоснабжения 25 мм при длине 30 м.
Чердачное перекрытие:


Рис. 6 Расчётная схема

Чердачное перекрытие состоит из конструктивных слоев, приведенных в таблице.



Наименование материала

(конструкции)


, кг/м 3

δ, м

,Вт/(м·°С)

R , м 2 ·°С/Вт

1

Плиты жесткие минераловатные на битумных связующих (ГОСТ 4640)

200

Х

0,08

Х

2

Пароизоляция – рубитекс 1 слой (ГОСТ 30547)

600

0,005

0,17

0,0294

3

Железобетонные пустотные плиты ПК (ГОСТ 9561 - 91)

0,22

0,142

Совмещённое покрытие:


Рис. 7 Расчётная схема

Совмещенное покрытие над теплым чердаком состоит из конструктивных слоев, приведенных в таблице.



Наименование материала

(конструкции)


, кг/м 3

δ, м

,Вт/(м·°С)

R , м 2 ·°С/Вт

1

Техноэласт

600

0,006

0,17

0,035

2

Цементно-песчаный раствор

1800

0,02

0,93

0,022

3

Плиты из газобетона

300

Х

0,13

Х

4

Рубероид

600

0,005

0,17

0,029

5

Железобетонная плита

2500

0,035

2,04

0,017

Б. Порядок расчета
Определение градусо-суток отопительного периода по формуле (2) СНиП 23-02–2003 :
D d = (t int – t ht)z ht = (21 + 5,9)·229 = 6160,1.
Нормируемое значение сопротивления теплопередаче покрытия жилого дома по формуле (1) СНиП 23-02–2003 :

R req = a ·D d + b =0,0005·6160,1 + 2,2 = 5,28 м 2 ·С/Вт;
По формуле (29) СП 23-101–2004 определяем требуемое сопротивление теплопередаче перекрытия теплого чердака
, м 2 ·°С /Вт:

,
где
– нормируемое сопротивление теплопередаче покрытия ;

n – коэффициент определяемый по формуле (30) СП 230101–2004,
(21 – 15)/(21 + 35) = 0,107.
По найденным значениям
и n определяем
:
= 5,28·0,107 = 0,56 м 2 ·С /Вт.

Требуемое сопротивление покрытия над теплым чердаком R 0 g . c устанавливаем по формуле (32) СП 23-101–2004:
R 0 g.c = (t ext)/(0,28 G ven с (t ven – ) + (t int – )/R 0 g.f +
+ (
)/А g.f – (t ext) а g.w / R 0 g.w ,
где G ven – приведенный (отнесенный к 1 м 2 чердака) расход воздуха в системе вентиляции, определяемый по табл. 6 СП 23-101–2004 и равный 19,5 кг/(м 2 ·ч);

c – удельная теплоемкость воздуха, равная 1кДж/(кг·°С);

t ven – температура воздуха, выходящего из вентиляционных каналов, °С, принимаемая равной t int + 1,5;

q pi – линейная плотность теплового потока через поверхность теплоизоляции, приходящаяся на 1 м длины трубопровода, принимаемая для труб отопления равной 25, а для труб горячего водоснабжения – 12 Вт/м (табл. 12 СП 23-101–2004).

Приведенные теплопоступления от трубопроводов систем отопления и горячего водоснабжения составляют:
()/А g.f = (25·55 + 12·30)/367 = 4,71 Вт/м 2 ;
a g . w – приведенная площадь наружных стен чердака м 2 /м 2 , определяемая по формуле (33) СП 23-101–2004,

= 108,2/367 = 0,295;

– нормируемое сопротивление теплопередаче наружных стен теплого чердака, определяемое через градусо-сутки отопительного периода при температуре внутреннего воздуха в помещении чердака = +15 ºС.

t ht)·z ht = (15 + 5,9)229 = 4786,1 °C·сут,
м 2 ·°С/Вт
Подставляем найденные значения в формулу и определяем требуемое сопротивление теплопередаче покрытия над теплым чердаком:
(15 + 35)/(0,28·19,2(22,5 – 15) + (21 – 15)/0,56 + 4,71 –
– (15 + 35)·0,295/3,08 = 50/50,94 = 0,98 м 2 ·°С/Вт

Определяем толщину утеплителя в чердачном перекрытии при R 0 g . f = 0,56 м 2 ·°С/Вт:

= (R 0 g . f – 1/– R ж.б – R руб – 1/) ут =
= (0,56 – 1/8,7 – 0,142 –0,029 – 1/12)0,08 = 0,0153 м,
принимаем толщину утеплителя = 40 мм, так как минимальная толщина минераловатных плит 40 мм (ГОСТ 10140), тогда фактическое сопротивление теплопередаче составит

R 0 g . f факт. = 1/8,7 + 0,04/0,08 + 0,029 + 0,142 + 1/12 = 0,869 м 2 ·°С/Вт.
Определяем величину утеплителя в покрытии при R 0 g . c = = 0,98 м 2 ·°С/Вт:
= (R 0 g . c – 1/ – R ж.б – R руб – R ц.п.р – R т – 1/) ут =
= (0,98 – 1/9,9 – 0,017 – 0,029 – 0,022 – 0,035 – 1/23) 0,13 = 0,0953 м,
принимаем толщину утеплителя (газобетонная плита) 100 мм, тогда фактическое значение сопротивления теплопередаче чердачного покрытия будет практически равно расчётному.
В. Проверка выполнения санитарно-гигиенических требований

тепловой защиты здания
I. Проверяем выполнение условия
для чердачного перекрытия:

= (21 – 15)/(0,869·8,7) = 0,79 °С,
Согласно табл. 5 СНиП 23-02–2003 ∆t n = 3 °С, следовательно, условие ∆t g = 0,79 °С t n =3 °С выполняется.
Проверяем наружные ограждающие конструкции чердака на условия невыпадения конденсата на их внутренних поверхностях, т.е. на выполнение условия
:

– для покрытия над теплым чердаком, приняв
Вт /м 2 ·°С,
15 – [(15 + 35)/(0,98·9,9] =
= 15 – 4,12 = 10,85 °С;
– для наружных стен теплого чердака, приняв
Вт /м 2 ·°С,
15 – [(15 + 35)]/(3,08·8,7) =
= 15 – 1,49 = 13,5 °С.
II. Вычисляем температуру точки росы t d , °С, на чердаке:

– рассчитываем влагосодержание наружного воздуха, г/м 3 , при расчетной температуре t ext:

=
– то же, воздуха теплого чердака, приняв приращение влагосодержания ∆f для домов с газовыми плитами, равным 4,0 г/м 3:
г/м 3 ;
– определяем парциальное давление водяного пара воздуха в теплом чердаке:


По приложению 8 по значению Е = е g находим температуру точки росы t d = 3,05 °С.

Полученные значения температуры точки росы сопоставляем с соответствующими значениями
и
:
=13,5 > t d = 3,05 °С; = 10,88 > t d = 3,05 °С.
Температура точки росы значительно меньше соответствующих температур на внутренних поверхностях наружных ограждений , следовательно, конденсат на внутренних поверхностях покрытия и на стенах чердака выпадать не будет.

Вывод . Горизонтальные и вертикальные ограждения теплого чердака удовлетворяют нормативным требованиям тепловой защиты здания.

Пример5
Расчет удельного расхода тепловой энергии на отопление 9-этажного односекционного жилого дома (башенного типа)
Размеры типового этажа 9-этажного жилого дома даны на рисунке.


Рис.8 План типового этажа 9-этажного односекционного жилого дома

А. Исходные данные
Место строительства – г. Пермь.

Климатический район – IВ.

Зона влажности – нормальная .

Влажностный режим помещения – нормальный.

Условия эксплуатации ограждающих конструкций – Б.

Продолжительность отопительного периода z ht = 229 сут .

Средняя температура отопительного периода t ht = –5,9 °С .

Температура внутреннего воздуха t int = +21 °С .

Температура холодной пятидневки наружного воздуха t ext = = –35 °С .

Здание оборудовано «теплым» чердаком и техническим подвалом.

Температура внутреннего воздуха технического подвала = = +2 °С

Высота здания от уровня пола первого этажа до верха вытяжной шахты H = 29,7 м.

Высота этажа – 2,8 м.

Максимальная из средних скоростей ветра по румбу за январь v = 5,2 м/с .
Б. Порядок расчета
1. Определение площадей ограждающих конструкций.

Определение площадей ограждающих конструкций базируется на основе плана типового этажа 9-этажного здания и исходных данных раздела А.

Общая площадь пола здания
А h = (42,5 + 42,5 + 42,5 + 57,38)·9 = 1663,9 м 2 .
Жилая площадь квартир и кухонь
А l = (27,76 + 27,76 + 27,76 + 42,54 + 7,12 + 7,12 +
+ 7,12 + 7,12)9 = 1388,7 м 2 .
Площадь перекрытия над техническим подвалом А b .с, чердачного перекрытия А g . f и покрытия над чердаком А g . c
А b .с = А g . f = А g . c = 16·16,2 = 259,2 м 2 .
Общая площадь оконных заполнений и балконных дверей А F при их количестве на этаже:

– оконных заполнений шириной 1,5 м – 6 шт.,

– оконных заполнений шириной 1,2 м – 8 шт.,

– балконных дверей шириной 0,75 м – 4 шт.

Высота окон – 1,2 м; высота балконы дверей – 2,2 м.
А F = [(1,5·6+1,2·8)·1,2+(0,75·4·2,2)]·9 = 260,3 м 2 .
Площадь входных дверей в лестничную клетку при их ширине 1,0 и 1,5 м и высоте 2,05 м
А ed = (1,5 + 1,0)·2,05 = 5,12 м 2 .
Площадь оконных заполнений лестничной клетки при ширине окна 1,2 м и высоте 0,9 м

= (1,2·0,9)·8 = 8,64 м 2 .
Общая площадь наружных дверей квартир при их ширине 0,9 м, высоте 2,05 м и количестве на этаже 4 шт.
А ed = (0,9·2,05·4)·9 = 66,42 м 2 .
Общая площадь наружных стен здания с учетом оконных и дверных проемов

= (16 + 16 + 16,2 + 16,2)·2,8·9 = 1622,88 м 2 .
Общая площадь наружных стен здания без оконных и дверных проемов

А W = 1622,88 – (260,28 + 8,64 + 5,12) = 1348,84 м 2 .
Общая площадь внутренних поверхностей наружных ограждающих конструкций, включая чердачное перекрытие и перекрытие над техническим подвалом,

= (16 + 16 + 16,2 + 16,2)·2,8·9 + 259,2 + 259,2 = 2141,3 м 2 .
Отапливаемый объем здания

V n = 16·16,2·2,8·9 = 6531,84 м 3 .
2. Определение градусо-суток отопительного периода.

Градусо-сутки определяются по формуле (2) СНиП 23-02–2003 для следующих ограждающих конструкций:

– наружных стен и чердачного перекрытия:

D d 1 = (21 + 5,9)·229 = 6160,1 °С·сут,
– покрытия и наружных стен теплого «чердака»:
D d 2 = (15 + 5,9)·229 = 4786,1 °С·сут,
– перекрытия над техническим подвалом:
D d 3 = (2 + 5,9)·229 = 1809,1 °С·сут.
3. Определение требуемых сопротивлений теплопередаче ограждающих конструкций.

Требуемое сопротивление теплопередаче ограждающих конструкций определяем по табл. 4 СНиП 23-02–2003 в зависимости от значений градусо-суток отопительного периода:

– для наружных стен здания
= 0,00035·6160,1 + 1,4 = 3,56 м 2 ·°С/Вт;
– для чердачного перекрытия
= n · = 0,107(0,0005·6160,1 + 2,2) = 0,49 м 2 ,
n =
=
= 0,107;
– для наружных стен чердака
= 0,00035·4786,1 + 1,4 = 3,07 м 2 ·°С/Вт,
– для покрытия над чердаком

=
=
= 0,87 м 2 ·°С/Вт;
– для перекрытия над техническим подвалом

= n b . c ·R reg = 0,34(0,00045·1809,1 + 1,9) = 0,92 м 2 ·°С/Вт,

n b . c =
=
= 0,34;
– для оконных заполнений и балконных дверей с тройным остеклением в деревянных переплетах (приложение Л СП 23-101–2004)

= 0,55 м 2 ·°С/Вт.
4. Определение расхода тепловой энергии на отопление здания.

Для определения расхода тепловой энергии на отопление здания в течение отопительного периода необходимо установить:

– общие теплопотери здания через наружные ограждения Q h , МДж;

– бытовые теплопоступления Q int , МДж;

– теплопоступления через окна и балконные двери от солнечной радиации, МДж.

При определении общих теплопотерь здания Q h , МДж, необходимо рассчитать два коэффициента:

– приведенный коэффициент теплопередачи через наружные ограждающие конструкции здания
, Вт/(м 2 ·°С);
L v = 3·A l = 3·1388,7 = 4166,1 м 3 /ч,
где A l – площадь жилых помещений и кухонь, м 2 ;

– определяемую среднюю кратность воздухообмена здания за отопительный период n a , ч –1 , по формуле (Г.8) СНиП 23-02–2003:
n a =
= 0,75 ч –1 .
Принимаем коэффициент снижения объема воздуха в здании, учитывающий наличие внутренних ограждений, B v = 0,85; удельную теплоемкость воздуха c = 1 кДж/кг·°С, и коэффициент учета влияния встречного теплового потока в светопрозрачных конструкциях k = 0,7:

=
= 0,45 Вт/(м 2 ·°С).
Значение общего коэффициента теплопередачи здания K m , Вт/(м 2 ·°С), определяем по формуле (Г.4) СНиП 23-02–2003:
K m = 0,59 + 0,45 = 1,04 Вт/(м 2 ·°С).
Рассчитываем общие теплопотери здания за отопительный период Q h , МДж, по формуле (Г.3) СНиП 23-02–2003:
Q h = 0,0864·1,04·6160,1·2141,28 = 1185245,3 МДж.
Бытовые теплопоступления в течение отопительного периода Q int , МДж, определяем по формуле (Г.11) СНиП 23-02–2003, приняв величину удельных бытовых тепловыделений q int , равной 17 Вт/м 2:
Q int = 0,0864·17·229·1132,4 = 380888,62 МДж.
Теплопоступления в здание от солнечной радиации за отопительный период Q s , МДж, определяем по формуле (Г.11) СНиП 23-02–2003, приняв значения коэффициентов, учитывающих затенение световых проемов непрозрачными элементами заполнения τ F = 0,5 и относительного проникновения солнечной радиации для светопропускающих заполнений окон k F = 0,46.

Среднюю за отопительный период величину солнечной радиации на вертикальные поверхности I ср, Вт/м 2 , принимаем по приложению (Г) СП 23-101–2004 для географической широты расположения г. Перми (56° с.ш.):

I av = 201 Вт/м 2 ,
Q s = 0,5·0,76(100,44·201 + 100,44·201 +
+ 29,7·201 + 29,7·201) = 19880,18 МДж.
Расход тепловой энергии на отопление здания в течение отопительного периода , МДж, определяем по формуле (Г.2) СНиП 23-02–2003, приняв численное значение следующих коэффициентов:

– коэффициент снижения теплопоступлений за счет тепловой инерции ограждающих конструкций = 0,8;

– коэффициент, учитывающий дополнительное теплопотребление системы отопления, связанное с дискретностью номинального теплового потока номенклатурного ряда отопительных приборов для зданий башенного типа = 1,11.
= ·1,11 = 1024940,2 МДж.
Устанавливаем удельный расход тепловой энергии здания
, кДж/(м 2 ·°С·сут), по формуле (Г.1) СНиП 23-02–2003:
=
= 25,47 кДж/(м 2 ·°С·сут).
Согласно данным табл. 9 СНиП 23-02–2003 нормируемый удельный расход тепловой энергии на отопление 9-этажного жилого здания составляет 25 кДж/(м 2 ·°С·сут), что на 1,02 % ниже расчетного удельного расхода тепловой энергии = 25,47 кДж/(м 2 ·°С·сут), поэтому при теплотехническом проектировании ограждающих конструкций необходимо учесть эту разницу.

Теплотехнический расчет технического подполья

Теплотехнические расчеты ограждающих конструкций

Площади наружных ограждающих конструкций, отапливаемые площадь и объем здания, необходимые для расчета энергетического паспорта, и теплотехнические характеристики ограждающих конструкций здания определяются согласно принятым проектным решениям в соответствии с рекомендациями СНиП 23-02 и ТСН 23 – 329 – 2002.

Сопротивления теплопередаче ограждающих конструкций определяются в зависимости от количества и материалов слоев, а также физических свойств строительных материалов по рекомендациям СНиП 23-02 и ТСН 23 – 329 – 2002.

1.2.1 Наружные стены здания

Наружные стены в жилом доме применены трех типов.

Первый тип - кирпичная кладка с поэтажным опиранием толщиной 120 мм, утепленная полистиролбетоном толщиной 280 мм, с облицовочным слоем из силикатного кирпича. Второй тип – железобетонная панель 200 мм, утепленная полистиролбетоном толщиной 280 мм, с облицовочным слоем из силикатного кирпича. Третий тип см. рис.1. Теплотехнический расчет приведен для двух типов стен соответственно.

1). Состав слоев наружной стены здания: защитное покрытие - цементно-известковый раствор толщиной 30 мм, λ = 0,84 Вт/(м× о С). Внешний слой 120 мм – из силикатного кирпича М 100 с маркой по морозостойкости F 50, λ = 0,76 Вт/(м× о С); заполнение 280 мм – утеплитель – полистиролбетон D200, ГОСТ Р 51263-99, λ = 0,075 Вт/(м× о С); внутренний слой 120 мм - из силикатного кирпича, М 100, λ = 0,76 Вт/(м× о С). Внутренние стены оштукатурены известково-песчаным раствором М 75 толщиной 15мм, λ=0,84 Вт/(м× о С).

R w = 1/8,7+0,030/0,84+0,120/0,76+0,280/0,075+0,120/0,76+0,015/0,84+1/23 = 4,26 м 2 × о С/Вт.

Сопротивление теплопередаче стен здания, при площади фасадов
A w = 4989,6 м 2 , равно: 4,26 м 2 × о С/Вт.

Коэффициент теплотехнической однородности наружных стен r, определяется по формуле 12 СП 23-101:

a i – ширина теплопроводного включения, a i = 0,120 м;

L i – длина теплопроводного включения, L i = 197,6 м (периметр здания);

k i – коэффициент, зависящий от теплопроводного включения, определяемый по прил. Н СП 23-101:

k i = 1,01 для теплопроводного включения при отношениях λ m /λ = 2,3 и a/b = 0,23.

Тогда приведенное сопротивление теплопередаче стен здания равно: 0,83 × 4,26 = 3,54 м 2 × о С/Вт.

2). Состав слоев наружной стены здания: защитное покрытие - цементно-известковый раствор М 75 толщиной 30 мм, λ = 0,84 Вт/(м× о С). Внешний слой 120 мм – из силикатного кирпича М 100 с маркой по морозостойкости F 50, λ = 0,76 Вт/(м× о С); заполнение 280 мм – утеплитель – полистиролбетон D200, ГОСТ Р 51263-99, λ = 0,075 Вт/(м× о С); внутренний слой 200 мм – железобетонная стеновая панель, λ= 2,04Вт/(м× о С).



Сопротивление теплопередаче стены равно:

R w = 1/8,7+0,030/0,84+0,120/0,76+0,280/0,075+
+0, 20/2,04+1/23 = 4,2 м 2 × о С/Вт.

Поскольку стены здания имеют однородную многослойную структуру, то коэффициент теплотехнической однородности наружных стен принят r = 0,7.

Тогда приведенное сопротивление теплопередаче стен здания равно: 0,7 × 4,2 = 2,9 м 2 × о С/Вт.

Тип здания - рядовая секция 9-этажного жилого дома при наличии нижней разводки труб систем отопления и горячего водоснабжения.

А b = 342 м 2 .

площадь пола тех. подполья - 342 м 2 .

Площадь наружных стен над уровнем земли А b , w = 60,5 м 2 .

Расчетные температуры системы отопления нижней разводки 95 °С, горячего водоснабжения 60 °С. Длина трубопроводов системы отопления с нижней разводкой 80 м. Длина трубопроводов горячего водоснабжения составила 30 м. Газораспределительных труб в тех. подполье нет, поэтому кратность воздухообмена в тех. подполье I = 0,5 ч -1 .

t int = 20 °С.

Площадь цокольного перекрытия (над тех. подпольем) - 1024,95 м 2 .

Ширина подвала – 17.6 м. Высота наружной стены тех. подполья, заглубленной в грунт, - 1,6 м. Суммарная длина l поперечного сечения ограждений тех. подполья, заглубленных в грунт,

l = 17.6 + 2×1,6 = 20,8 м.

Температура воздуха в помещениях первого этажа t int = 20 °С.

Сопротивление теплопередаче наружных стен тех. подполья над уровнем земли принимают согласно СП 23-101 п. 9.3.2. равным сопротивлению теплопередаче наружных стен R o b . w = 3,03 м 2 ×°С/Вт.

Приведенное сопротивление теплопередаче ограждающих конструкций заглубленной части тех. подполья определим согласно СП 23-101 п. 9.3.3. как для не утепленных полов на грунте в случае, когда материалы пола и стены имеют расчетные коэффициенты теплопроводности λ≥ 1,2 Вт/(м о С). Приведенное сопротивление теплопередаче ограждений тех. подполья, заглубленных в грунт определено по таблице 13 СП 23-101 и составило R o rs = 4,52 м 2 ×°С/Вт.

Стены подвала состоят из: стенового блока, толщиной 600 мм, λ = 2,04 Вт/(м× о С).

Определим температуру воздуха в тех. подполье t int b

Для расчета используем данные таблицы 12 [СП 23-101]. При температуре воздуха в тех. подполье 2 °С плотность теплового потока от трубопроводов возрастет по сравнению с значениями, приведенными в таблице 12, на величину коэффициента, полученного из уравнения 34 [СП 23-101]: для трубопроводов системы отопления - на коэффициент [(95 - 2)/(95 - 18)] 1,283 = 1,41; для трубопроводов горячего водоснабжения - [(60 - 2)/(60 - 18) 1,283 = 1,51. Тогда рассчитаем значение температуры t int b из уравнения теплового баланса при назначенной температуре подполья 2 °С

t int b = (20×342/1,55 + (1,41 25 80 + 1,51 14,9 30) - 0,28×823×0,5×1,2×26 - 26×430/4,52 - 26×60,5/3,03)/

/(342/1,55 + 0,28×823×0,5×1,2 + 430/4,52 +60,5/3,03) = 1316/473 = 2,78 °С.

Тепловой поток через цокольное перекрытие составил

q b . c = (20 – 2,78)/1,55 = 11,1 Вт/м 2 .

Таким образом, в тех. подполье эквивалентная нормам тепловая защита обеспечивается не только ограждениями (стенами и полом), но и за счет теплоты от трубопроводов систем отопления и горячего водоснабжения.

1.2.3 Перекрытие над тех. подпольем

Ограждение имеет площадь A f = 1024,95 м 2 .

Конструктивно перекрытие выполнено следующим образом.


2,04 Вт/(м× о С). Цементно-песчаная стяжка толщиной 20 мм, λ =
0,84 Вт/(м× о С). Утеплитель экструдированный пенополистирол «Руфмат», ρ о =32 кг/м 3 , λ = 0,029 Вт/(м× о С), толщиной 60 мм по ГОСТ 16381. Воздушная прослойка, λ = 0,005 Вт/(м× о С), толщиной 10 мм. Доски для покрытия полов, λ = 0,18 Вт/(м× о С), толщиной 20 мм по ГОСТ 8242.

R f = 1/8,7+0,22/2,04+0,020/0,84+0,060/0,029+

0,010/0,005+0,020/0,180+1/17 = 4,35 м 2 × о С/Вт.

Согласно п.9.3.4 СП 23-101 определим значение требуемого сопротивления теплопередаче цокольного перекрытия над техподпольем по формуле

R o = nR req ,

где n - коэффициент, определяемый при принятой минимальной температуре воздуха в подполье t int b = 2°С.

n = (t int - t int b )/(t int - t ext ) = (20 - 2)/(20 + 26) = 0,39.

Тогда R с = 0,39×4,35 = 1,74 м 2 ×°С/Вт.

Проверим, удовлетворяет ли теплозащита перекрытия над техподпольем требованию нормативного перепада Dt n = 2 °С для пола первого этажа.

По формуле (3) СНиП 23 - 02 определим минимально допустимое сопротивление теплопередаче

R o min = (20 - 2)/(2×8,7) = 1,03 м 2 ×°С/Вт < R с = 1,74 м 2 ×°С/Вт.

1.2.4 Перекрытие чердачное

Площадь перекрытия A c = 1024,95 м 2 .

Железобетонная плита перекрытия, толщиной 220 мм, λ =
2,04 Вт/(м× о С). Утеплитель минплита ЗАО «Минеральная вата», r =140-
175 кг/м 3 , λ = 0,046 Вт/(м× о С), толщиной 200 мм по ГОСТ 4640. Сверху покрытие имеет цементно-песчаную стяжку толщиной 40 мм, λ = 0,84 Вт/(м× о С).

Тогда сопротивление теплопередаче равно:

R c = 1/8,7+0,22/2,04+0,200/0,046+0,04/0,84+1/23=4,66 м 2 × о С/Вт.

1.2.5 Покрытие чердачное

Железобетонная плита перекрытия, толщиной 220 мм, λ =
2,04 Вт/(м× о С). Утеплитель гравий керамзитовый, r =600 кг/м 3 , λ =
0,190 Вт/(м× о С), толщиной 150 мм по ГОСТ 9757; минплита ЗАО «Минеральная вата», 140-175 кг/м3, λ = 0,046 Вт/(м×оС), толщиной 120 мм по ГОСТ 4640. Сверху покрытие имеет цементно-песчаную стяжку толщиной 40 мм, λ = 0,84 Вт/(м× о С).

Тогда сопротивление теплопередаче равно:

R c = 1/8,7+0,22/2,04+0,150/0,190+0,12/0,046+0,04/0,84+1/17=3,37 м 2 × о С/Вт.

1.2.6 Окна

В современных светопрозрачных конструкциях теплозащитных окон используются двухкамерные стеклопакеты, а для выполнения оконных коробок и створок, в основном, ПВХ профили или их комбинации. При изготовлении стеклопакетов с применением флоат – стекла окна обеспечивают расчетное приведенное сопротивление теплопередаче не более 0,56 м 2 × о С/Вт., что соответствует нормативным требованиям при проведении их сертификации.

Площадь оконных проемов A F = 1002,24 м 2 .

Сопротивление теплопередаче окна принимаем R F = 0,56 м 2 × о С/Вт.

1.2.7 Приведенный коэффициент теплопередачи

Приведенный коэффициент теплопередачи через наружные ограждающие конструкции здания, Вт/(м 2 ×°С), определяется по формуле 3.10 [ТСН 23 – 329 – 2002] с учетом принятых в проекте конструкций:

1,13(4989,6 / 2,9+1002,24 / 0,56+1024,95 / 4,66+1024,95 / 4,35) / 8056,9 = 0,54 Вт/(м 2 ×°С).

1.2.8 Условный коэффициент теплопередачи

Условный коэффициент теплопередачи здания , учитывающий теплопотери за счет инфильтрации и вентиляции, Вт/(м 2 ×°С), определяется по формуле Г.6 [СНиП 23 - 02] с учетом принятых в проекте конструкций:

где с – удельная теплоемкость воздуха, равная 1 кДж/(кг×°С);

β ν – коэффициент снижения объема воздуха в здании, учитывающий наличие внутренних ограждающих конструкций, равный β ν = 0,85.

0,28×1×0,472×0,85×25026,57×1,305×0,9/8056,9 = 0,41 Вт/(м 2 ×°С).

Средняя кратность воздухообмена здания за отопительный период рассчитывается по суммарному воздухообмену за счет вентиляции и инфильтрации по формуле

n a = [(3×1714,32) × 168/168+(95×0,9×

×168)/(168×1,305)] / (0,85×12984) = 0,479 ч -1 .

– количество инфильтрующегося воздуха, кг/ч, поступающего в здание через ограждающие конструкции в течение суток отопительного периода, определяется по формуле Г.9 [СНиП 23-02-2003]:

19,68/0,53×(35,981/10) 2/3 + (2,1×1,31)/0,53×(56,55/10) 1/2 = 95 кг/ч.

– соответственно для лестничной клетки расчетная разность давлений наружного и внутреннего воздуха для окон и балконных дверей и входных наружных дверей, определяют по формуле 13 [СНиП 23-02-2003] для окон и балконных дверей с заменой в ней величины 0,55 на 0,28 и с вычислением удельного веса по формуле 14 [СНиП 23-02-2003] при соответствующей температуре воздуха, Па.

∆р е d = 0,55×Η ×(γ ext - γ int ) + 0,03× γ ext ×ν 2 .

где Η = 30,4 м– высота здания;

– удельный вес соответственно наружного и внутреннего воздуха, Н/м 3 .

γ ext = 3463/(273-26) = 14,02 Н/м 3 ,

γ int = 3463/(273+21) = 11,78 Н/м 3 .

∆р F = 0,28×30,4×(14,02-11,78)+0,03×14,02×5,9 2 = 35,98 Па.

∆р ed = 0,55×30,4×(14,02-11,78)+0,03×14,02×5,9 2 = 56,55 Па.

– средняя плотность приточного воздуха за отопительный период, кг/м 3 , ,

353/ = 1,31 кг/м 3 .

V h = 25026,57 м 3 .

1.2.9 Общий коэффициент теплопередачи

Условный коэффициент теплопередачи здания, учитывающий теплопотери за счет инфильтрации и вентиляции, Вт/(м 2 ×°С), определяется по формуле Г.6 [СНиП 23-02-2003] с учетом принятых в проекте конструкций:

0,54 + 0,41 = 0,95 Вт/(м 2 ×°С).

1.2.10 Сравнение нормируемых и приведенных сопротивлений теплопередачи

В результате проведенных расчетов сравниваются в табл. 2 нормируемые и приведенные сопротивления теплопередаче.

Таблица 2 – Нормируемое R reg и приведенные R r o сопротивления теплопередаче ограждений здания

1.2.11 Защита от переувлажнения ограждающих конструкций

Температура внутренней поверхности ограждающих конструкций должна быть больше температуры точки росы t d =11,6 о С (3 о С – для окон).

Температуру внутренней поверхности ограждающих конструкций τ int , рассчитывается по формуле Я.2.6 [СП 23-101]:

τ int = t int -(t int -t ext )/(R r ×α int ),

для стен здания:

τ int =20-(20+26)/(3,37×8,7)=19,4 о С > t d =11,6 о С;

для перекрытия технического этажа:

τ int =2-(2+26)/(4,35×8,7)=1,3 о С < t d =1,5 о С, (φ=75%);

для окон:

τ int =20-(20+26)/(0,56×8,0)=9,9 о С > t d =3 о С.

Температура выпадения конденсата на внутренней поверхности конструкции определялась по I-d диаграмме влажного воздуха.

Температуры внутренних конструкционных поверхностей удовлетворяют условиям недопущения конденсации влаги, за исключением конструкций перекрытия технического этажа.

1.2.12 Объемно-планировочные характеристики здания

Объемно-планировочные характеристики здания устанавливаются согласно СНиП 23-02.

Коэффициент остекленности фасадов здания f :

f = A F /A W + F = 1002,24 / 5992 = 0,17

Показатель компактности здания , 1/м:

8056,9 / 25026,57 = 0,32 м -1 .

1.3.3 Расход тепловой энергии на отопление здания

Расход тепловой энергии на отопление здания за отопительный период Q h y , МДж, определяем по формуле Г.2 [СНиП 23 - 02]:

0,8 – коэффициент снижения теплопоступлений за счет тепловой инерции ограждающих конструкций (рекомендуемый);

1,11 – коэффициент, учитывающий допол­нительное теплопотребление системы отопления, связанное с дискретностью номинального теплового потока номенклатурного ряда отопительных приборов, их дополнительными теплопотерями через зарадиаторные участки ограждений, повышенной температурой воздуха в угловых помещениях, теплопотерями трубопроводов, проходящих через не отапливаемые помещения.

Общие теплопотери здания Q h , МДж, за отопительный период определяются по формуле Г.3 [СНиП 23 - 02]:

Q h = 0,0864×0,95×4858,5×8056,9 = 3212976 МДж.

Бытовые теплопоступления в течение отопительного периода Q int , МДж, определяются по формуле Г.10 [СНиП 23 - 02]:

где q int = 10 Вт/м 2 – величина бытовых тепловыделений на 1 м 2 площади жилых помещений или расчетной площади общественного здания.

Q int = 0,0864×10×205×3940= 697853 МДж.

Теплопоступления через окна от солнечной радиации в течение отопительного периода Q s , МДж, определяются по формуле 3.10 [ТСН 23 – 329 - 2002]:

Q s =τ F ×k F × ( A F 1 ×I 1 +A F 2 ×I 2 +A F 3 ×I 3 +A F 4 ×I 4 )+τ scy ×k scy ×A scy ×I hor ,

Q s = 0,76×0,78×(425,25×587+25,15×1339+486×1176+66×1176)= 552756 МДж.

Q h y = ×1,11 = 2 566917 МДж.

1.3.4 Расчетный удельный расход тепловой энергии

Расчетный удельный расход тепловой энергии на отопление здания за отопительный период, кДж/(м 2 × о С×сут), определяется по формуле
Г.1 :

10 3 ×2 566917 /(7258×4858,5) = 72,8 кДж/(м 2 × о С×сут)

Согласно табл. 3.6 б [ТСН 23 – 329 – 2002] нормируемый удельный расход тепловой энергии на отопление девяти -этажного жилого здания 80кДж/(м 2 × о С×сут) или 29 кДж/(м 3 × о С×сут).


ЗАКЛЮЧЕНИЕ

В проекте 9-этажного жилого дома были использованы специальные приемы повышения энергоэффективности здания такие как:

¾ применено конструктивное решение, позволяющее не только осуществлять быстрое возведение объекта, но и использовать в наружной ограждающей конструкции различные конструкционно – изоляционные материалы и архитектурные формы по желанию заказчика и с учетом существующих возможностей стройиндустрии области,

¾ в проекте выполняется теплоизоляция трубопроводов отопления и горячего водоснабжения,

¾ применены современные теплоизоляционные материалы, в частности, полистиролбетон D200, ГОСТ Р 51263-99,

¾ в современных светопрозрачных конструкциях теплозащитных окон используются двухкамерные стеклопакеты, а для выполнения оконных коробок и створок, в основном, ПВХ профили или их комбинации. При изготовлении стеклопакетов с применением флоат – стекла окна обеспечивают расчетное приведенное сопротивление теплопередаче 0,56 Вт/(м×оС).

Энергетическая эффективность проектируемого жилого дома определяется по следующим основным критериям:

¾ удельный расход тепловой энергии на отопление в течение отопительного периода q h des ,кДж/(м 2 ×°С×сут) [кДж/(м 3 ×°С×сут)];

¾ показатель компактности здания k e ,1/м;

¾ коэффициент остекленности фасада здания f .

В результате проведенных расчетов можно сделать следующие выводы:

1. Ограждающие конструкции 9-этажного жилого здания соответствуют требованиям СНиП 23-02 по энергетической эффективности.

2. Здание рассчитано на поддержание оптимальных температуры и влажности воздуха с обеспечением наименьших затрат на энергопотребление.

3. Вычисленный показатель компактности здания k e = 0,32 равен нормативному.

4. Коэффициент остекленности фасада здания f=0.17 близок к нормативному значению f=0.18.

5. Степень уменьшения расхода тепловой энергии на отопление здания от нормативного значения составила минус 9 %. Данное значение параметра соответствует нормальному классу теплоэнергетической эффективности здания согласно табл.3 СНиП 23-02-2003 Тепловая защита зданий.


ЭНЕРГЕТИЧЕСКИЙ ПАСПОРТ ЗДАНИЯ