Для чего нужны фаза, ноль и заземление? Заземление и зануление в чем разница, и как обеспечить безопасную эксплуатацию электроприборов Чем отличается рабочий ноль от заземления.

Главное требование к любому электробытовому прибору - безопасность эксплуатации. Особенно это касается техники, контактирующей с водой. При отсутствии дополнительной защиты даже небольшая проблема с электропроводкой (прожог изоляционного слоя, пробивка между витками двигателя) опасны. На корпусе неисправного прибора появляется электрический потенциал. В этом случае человека или животное, прикоснувшихся к корпусу, может ударить током. Чтобы избежать этого, разработаны такие способы защиты, как зануление и заземление.

Задачи заземления

Искусственно созданный контакт между электроустановкой и землей называется заземлением. Его задача - понизить напряжение на корпусе устройства до безопасного для живых существ уровня. При этом большая часть тока отводится в грунт. Чтобы заземлительная система работала эффективно, ее сопротивление должно быть значительно ниже, чем на остальных участках цепи. Такое требование основывается на свойстве электрического тока всегда выбирать наименьшее сопротивление на своем пути.

Обратите внимание! Заземление используется исключительно в электросетях с изолированной нейтралью.

Тока замыкания иногда недостаточно при использовании заземлителя с относительно высоким для реакции защитных устройств сопротивлением. Поэтому еще одна задача заземлительной системы - рост аварийного тока замыкания.

Типы заземляющих устройств:

  1. Молниезащитные. Отводят импульсные токи, поступающие в систему в результате ударов молнии. Используются в молниеотводах и разрядниках.
  2. Рабочие. Предназначены для поддержания нормальной работоспособности электрических установок. Используются как в обычных, так и в аварийных ситуациях.
  3. Защитные. Защищают людей и животных от поражения током, проходящим по металлическим предметам в случае пробоя фазовых проводников.

Устройства заземления бывают естественными и искусственными:

  1. К естественным относят металлические изделия, основная функция которых не заключается в отводе тока в землю. К таким заземлителям относятся трубопроводы, железобетонные элементы зданий, обсадные магистрали и т.п.
  2. Искусственные заземлители - системы, созданные специально для отвода тока. Это стальные полосы, трубы, уголки и другие металлические элементы.

Для заземлительной системы нельзя использовать трубы, предназначенные для транспортировки горючих веществ (как газов, так и жидкостей), алюминиевые детали, кабельные оболочки. Также не подходят для этой цели предметы, покрытые антикоррозийным изоляционным слоем. Запрещено использовать как заземляющие проводники трубы водопровода и отопления.

Техническое исполнение систем заземления

Существует несколько схем соединения с разным составом защитных и рабочих проводников:

  • TN-C;
  • TN-C-S;

На разновидность заземления указывает первая буква в обозначении:

  • I - токоведущие элементы не касаются грунта;
  • T - нейтраль источника электропитания заземлена.

Способ заземления открытых проводников определяется по второй букве:

  • N - прямой контакт между местом заземления и источником питания;
  • T - прямая связь с грунтом.

После дефиса стоят буквы, указывающие на метод функционирования защитного PE и рабочего N нулевых проводников:

S - работа проводников обеспечивается единственным PEN-проводником;

C - имеется несколько проводников.

Система TN

Заземление разновидности TN включает подсистемы TN-C, TN-S, TN-C-S. Самая старая из этих подсистем - TN-C - применяется в 3-фазных четырехпроводных и 1-фазных двухпроводных электросетях. Такие сети обычно есть в старых строениях. При всей своей простоте и относительно невысокой стоимости система не обеспечивает достаточного уровня безопасности, а потому в новостройках не используется.

Подсистема TN-C-S применяется при реновациях старых зданий. Она актуальна там, где рабочий и защитный проводники объединены на вводе. Использование TN-C-S необходимо для реконструкции системы, когда в старом строении устанавливается компьютерное или телекоммуникационное оборудование. Данное заземление представляет собой переходный тип между TN-C и самой современной подсистемой - TN-S. TN-C-S - относительно безопасная и доступная финансово заземлительная схема.

Отличием подсистемы TN-S от других типов такого оборудования является местонахождение рабочего и нулевого проводников. Они установлены по отдельности, при этом нулевой защитный PE-проводник объединяет все имеющиеся токопроводящие элементы электрической установки. Во избежание дублирования создают трансформаторную подстанцию, оснащенную основным заземлением. Дополнительное преимущество подстанции состоит в возможности уменьшить протяженность проводника, идущего от входа кабеля в оборудование до заземлителя.

Система TT

В данной системе заземления токоведущие открытые элементы непосредственно контактируют с грунтом. При этом электроды не зависят от заземлительного устройства нейтрали подстанции. TT применяется, когда по техническим причинам нельзя построить систему TN.

Система IT

В этой системе нейтраль источника питания не касается земли или заземляется с помощью электроустановки с повышенным сопротивлением. Схема популярна в ситуациях, когда необходимо подключение чувствительной аппаратуры (больницы, лаборатории и т.п.).

Зануление

Процесс зануления состоит в объединении металлических элементов, не находящихся под напряжением с заземленной нейтралью понижающего источника 3-фазного тока. Также используют заземленный вывод генератора 1-фазного тока. Зануление используется с целью провоцирования короткого замыкания в случае пробоя изоляционного слоя или проникновения тока на нетоковедущий элемент оборудования. Смысл возникновения короткого замыкания в том, что после этого срабатывает автомат-выключатель, перегорают плавкие предохранители или включаются другие защитные средства. Зануление используется в электрических установках с глухозаземленной нейтралью.

Если установить на линию устройство защитного отключения, оно будет срабатывать из-за разницы сил тока на фазе и нуле. Установленный в дополнение к УЗО автомат-выключатель позволит срабатывать обоим устройствам в случае пробоя или же подключать наиболее быстро подключающийся элемент защиты.

При монтаже зануления следует иметь в виду, что короткое замыкание должно приводить к оплавлению предохранителя или отключению выключателя-автомата. Если этого не произойдет, свободное течение тока замыкания по электроцепи станет причиной появления напряжения на всех зануленных предметах, а не только на месте пробоя. Показатель напряжения - произведение сопротивления нуля на ток замыкания, что очень опасно при ударе током живого существа.

Необходимо внимательно следить за исправным состоянием нулевого проводника. При его обрыве возникает напряжение на всех зануленных элементах, поскольку они автоматически входят в контакт с фазой. По этой причине запрещена установка на нулевой проводник любых защитных устройств (помимо выключателей и предохранителей), из-за которых происходит разрыв при срабатывании.

Чтобы снизить опасность удара током при обрыве нулевого проводника, каждые 200 метров линии создаются дополнительные заземления, как и на концевых и вводных опорах. Уровень сопротивления на каждом новом заземлителе не должен быть выше 30 Ом.

Отличие заземления от нуля

Главной разницей между заземлением и занулением является назначение систем. Заземление нужно, чтобы быстро понизить напряжение до приемлемого уровня. Задача зануления - полностью отключить ток на участке, где возник пробой на корпус или другой нетоковедущий элемент. Зануление связано с уменьшением потенциала корпуса в период между замыканием и отключением подачи электричества.

В новостройках зануление не используют. В новых зданиях прокладывают 3-проводный кабель с фазой, нулем и землей (1-фазная система) или 5-проводный кабель (три фазы, ноль и земля) в 3-фазной системе. Чаще всего используется схема TN-S, но встречается и TN-C-S.

Нужно ли делать зануление в квартире

Применять зануление в целях защиты жильцов и электроустановок в квартире не стоит - бывают ситуации, когда холодильник (или другой прибор) занулен, и при этом случается пробой тока. Также нередко встречается некорректно выполненный электромонтаж (электрик ведь мог и перепутать провода и вместо нуля подключил фазу). В таких случаях бытовая техника выходит из строя еще до того, как сработает автомат-выключатель.

Установка устройства защитного отключения, дифференциального автомата или автомата-выключателя необходима только вместе с занулением.

Требования к заземлению и занулению

Все электроустановки и цепи, оснащенные изоляцией нулевого провода, нуждаются в монтаже защитной системы (занулении или заземлении).

Существует несколько правил, которых следует придерживаться при создании защитной системы:

  1. Зануление необходимо делать для установок с глухозаземленным проводником мощностью до 1000 вольт. Заземление в подобных системах не делают.
  2. Зануление следует снабжать трансформатором на 380 вольт. В зануленной системе вторичное напряжение не должно превышать 380 вольт, а понижающее - 42 вольт.
  3. При занулении допускается подключение от разделяющего трансформатора лишь к одному потребителю электроэнергии. Номинал тока защитного устройства - до 15 ампер. Зануление или заземление вторичной обмотки не допускается.
  4. При заземлении нуля в 3-фазной электроцепи нужно ставить защиту от пробоя тока. Монтировать ее в нулевом проводнике или фазе от нижнего напряжения.
  5. Защитное заземление или зануление необходимо создавать на расположенных на улице установках, а также в особо опасных условиях работы. Номинал напряжения составляет 42 вольта (переменный ток) или 110 вольт (постоянный ток).
  6. Для напряжения выше 380 вольт (постоянный ток) и 440 вольт (переменный ток) защита необходима вне зависимости от других условий.

Заземлению подлежат:

  • корпуса электрических установок;
  • приводы оборудования;
  • каркасные части и металлоконструкции распредшкафов и щитов;
  • вторичные трансформаторные обмотки;
  • стальные кабельные оболочки;
  • шинопроводы;
  • тросы;
  • металлические трубы для проводки;
  • электрооборудование, установленное на движущихся элементах.

Что касается жилья, зануление и заземление необходимо для электрической бытовой техники мощностью более 1300 ватт. Заземлению для выравнивания потенциалов подлежат такие металлические изделия, как ванны и душевые поддоны, подвесные потолки.

Чтобы заземлить кондиционеры, электрические плиты или подобные им потребители электричества мощностью свыше 1300 ватт, используют выделенный проводник. Его следует соединить с нулем электросети.

Обратите внимание! Сечения фазного и нулевого проводника должны быть одинаковыми.

Подробный список электроустановок, на которых необходима защита путем заземления или зануления, указаны в Правилах устройства электроустановок. ПУЭ - официальный документ, в нем прописаны все нормативы. Документ также устанавливает перечень оборудования, для которого защита необязательна.

Создание системы заземления и зануления крайне важно, от этого зависит безопасность людей и сохранение имущества. Поэтому цена ошибки велика. Рекомендуется поручать эту работу только квалифицированным работникам.

Даже начинающему электрику известно, что для защиты от удара электрическим током при монтаже электропроводки применяется заземление и зануление. Использование не защищенных таким образом линий электропередач может повлечь за собой серьезные последствия, вплоть до летального исхода.

Разницу между этими понятиями как зануление и заземление рассмотрим в нашей статье. Для начала следует четко уяснить, что хотя эти методы служат одной цели, а именно обеспечению безопасности, между ними существует ряд принципиальных различий.

Чтобы внести окончательную ясность в этот вопрос, рассмотрим оба метода более подробно, чем же отличаются заземление от зануления?

Что такое заземление и для чего она нужна?

Под заземлением подразумевают металлическую конструкцию, предназначенную для снижения степени напряжения до неопасных для человека параметров. Важнейшей особенностью монтажа является установка системы в местах, обеспечивающих надежную изоляцию нейтрального провода.

Помимо этого, наличие заземления позволяет существенно увеличивать аварийный ток. Необходимость повышения этого параметра связана с тем, что при повышенном сопротивлении заземляющего контура, несмотря на критическое состояние электроприборов тока замыкания в некоторых случаях недостаточно для срабатывания защитных механизмов при этом опасность получения электротравмы сохраняется.

Принципиально, заземляющий контур является системой из нескольких проводников, обеспечивающих соединение токопроводящих элементов оборудования с грунтом. По назначению эти системы можно разделить на три основных типа:

  1. Рабочий тип разработан для обеспечения работоспособности оборудования, как в обычных условиях, так и в условиях непредвиденных ситуаций;
  2. Защитный тип обеспечивает защиту обслуживающего персонала в случае пробоя токоведущих элементов на корпус;
  3. Грозозащитный тип обеспечивает отвод в землю атмосферных электрических разрядов.

Помимо этого, различают искусственное и естественное заземление и зануление. Разница в том что искусственное представляет собой специально изготовленную . К естественным, можно отнести металлические конструкции, изготовленные для других целей и используемые в качестве заземления.

Что значит зануление?

Зануление как по назначению, так и по основным принципам существенно отличается от заземления. Принцип представляет собой подключение защитного провода к металлическим составляющим конструкции, которые не проводят электрический ток. Возможно также присоединение к нулю, используемому источником напряжения либо к другому заземленному проводу.

Главной задачей заземления и зануления является обеспечение своевременного срабатывания специального защитного оборудования. Принципом работы является провоцирование короткого замыкания в случае пробоя изоляции и других неисправностей в работе электрооборудования. Вследствие использования этих систем, возможно срабатывание таких защитных механизмов:

  • Автоматический выключатель;
  • Система плавких вставок;
  • Инновационные системы защиты.

В чем разница между занулением и заземлением?

Основное различие состоит в различных методах монтажа. Использование для присоединения нулевого провода обеспечивает эффективное использование этого вида защиты для гарантии безопасности как людей, так и техники. При монтаже зануления следует удостовериться, что возникающего в экстренной ситуации тока хватит для 100% срабатывания защитного оборудования.

В случае же недостаточного тока короткого замыкания возможно появление напряжения на составных частях электроприборов, что приводит не только к выходу из строя оборудования, но и существенно повышает риск поражения персонала электрическим током. Из всего вышеизложенного можно сделать следующий вывод:

При появлении напряжения на рабочей поверхности оборудования заземление обеспечивает оперативный отвод тока в землю по специальному заземляющему контуру, в то время как использование зануления не способствует отводу напряжения от поверхности, однако при правильном монтаже обеспечивает разрыв электрической цепи при помощи различных защитных устройств.

Учитывая принципиальное отличие в методах обеспечения электробезопасности, на электрических схемах они обозначаются по-разному.

В чем разница зануления и заземления теперь понятно, остается прояснить некоторые нюансы.

Как обозначаются заземление и зануление на схемах?

Все электротехническое оборудование с присутствующими элементами заземления и зануления нуждается в специальной маркировке. Маркировку наносят на шину в виде букв РЕ с продольными или поперечными полосами желтого или зеленого цветов. Нейтрали маркируются голубой буквой N, подразумевающей заземление или зануление.

Буквами показывают особенности заземляющего контура:

  • Т - обозначает непосредственный контакт земли и источника питания;
  • I - обозначает полную изоляцию токопроводящих элементов от земли.
  • Вторая буква характеризует расположение токопроводящих элементов относительно земли:
  • Т свидетельствует о необходимом заземлении всех элементов находящихся под напряжением;
  • N характеризует защиту открытых частей посредством глухозаземленной нейтрале с непосредственным подключением источника питания.

Между заземлением и занулением, в чем разница, что целесообразнее использовать в зависимости от конкретного оборудования мы рассмотрели. Независимо от выбранного метода защиты, особое значение имеет точность расчетов и внимательность и аккуратность монтажа.

Основным условием безопасной эксплуатации электроустановок является выбор правильной схемы защиты от случайного попадания высокого потенциала на не используемые для передачи энергии металлические части (корпуса, станины и т.п.). Для решения этой задачи требованиями действующих стандартов (ПУЭ, в частности) предусмотрено использование специальных защитных приспособлений, называемых заземляющими устройствами – ЗУ. Они обустраиваются в непосредственной близости от защищаемой конструкции и имеют вид, приводимый на рисунке ниже.

Процесс обустройства конструкций, обеспечивающих защиту сооружений и людей от удара электрическим током или молнией, в электротехнике принято называть заземлением. Для того чтобы иметь полное и чёткое представление о том, что такое заземление потребуется исследовать его отличительные черты и принципы организации более подробно.

Суть заземления

Под заземлением понимается преднамеренное соединение металлических частей электроустановок и другого оборудования, в данный момент не находящихся под напряжением, с элементами специальных устройств, называемых заземлителями. Конструкция последних обычно состоит из нескольких забиваемых в землю стальных штырей или отрезков арматуры, сваренных между собой полосами из того же металла.

В комплекте с набором гибких медных проводов и толстых полос (шин) заземлители образуют так называемый «заземляющий контур», к которому подключаются корпуса всех имеющихся на объекте и нуждающихся в защите электроприборов. Поскольку сам контур частично или полностью погружён в грунт и имеет с ним практически идеальный контакт, его потенциал в нормальных условиях близок к нулю, что позволяет сделать следующие выводы:

  • При попадании высокого напряжения на металлические части защищённого объекта или прибора его значение тут же снизится до безопасного для человека уровня (фото ниже);
  • Если человек или животное случайно прикоснутся к корпусу аварийного, но защищённого таким образом оборудования, они практически не пострадают от высокого напряжения;
  • В ситуации, когда в питающей линии установлен чувствительный прибор, реагирующий на сторонние токи утечки (УЗО, например), при появлении опасного напряжения он сработает и моментально отключит данный участок от источника электропитания.

В этом заключается суть эффекта заземления, которое не следует путать с ещё одним часто применяемым в электротехнике приёмом защиты, называемым занулением.

Понятие зануления

У каждого неискушённого в электротехнических терминах пользователя может возникнуть вопрос: чем отличается заземление от зануления, а также когда используется последнее?

Для понимания отличия заземления от зануления потребуется рассмотреть принцип защиты оборудования распределительных подстанций, суть которого сводится к следующему:

  • Оборудование любых электрических станций, включая установленные на них понижающие трансформаторы, имеет нулевую точку или нейтраль;
  • В соответствии с требованиями ПУЭ, эта точка обязательно соединяется с местным ЗУ, обустроенным непосредственно на территории подстанции;
  • Заземление выполняется в виде непосредственной связи с грунтом, вследствие чего такая точка называется глухо-заземлённой;
  • Действие этого заземления распространяется на все потребители, подключаемые к данной электрической подстанции через разветвлённую систему электропитания.

Таким образом, до каждого потребителя вместе с фазными проводами подводится так называемая «нулевая защитная» жила, уже заземлённая наглухо на стороне подстанции (смотрите фото).

Обратите внимание! В современных системах электропитания (TN-C-S, например) она прокладывается отдельным от рабочей шины N проводом PE.

При занулении приёмного оборудования его металлические части преднамеренно соединяются не с ЗУ (как это делается при заземлении), а с совмещенным нулевым проводом, входящим в состав системы энергоснабжения. В системе TN-C-S они подключаются к отдельному PE-проводнику.

Зануление обеспечивает снижение угрозы поражения электротоком при случайном прикосновении к открытым металлическим частям оборудования, вследствие аварии оказавшимся под напряжением. При появлении вопросов типа «в чем разница зануления и заземления» всегда нужно помнить о том, что первое гарантирует автоматическое отключение повреждённой линии от питающей сети, а второе – нет.

Отличия заземления и зануления

Нередко пользователи задаются вопросом, а можно ли делать зануление вместо заземления, и как это отразится на безопасности потребителя. Отвечая на все подобные вопросы, следует исходить из определения, данного этому виду защиты в предыдущем разделе. Из него следует, что функционально зануление более эффективно, поскольку в короткий промежуток времени до срабатывания станционной автоматики оно выполняет ту же функцию, что и обычное ЗУ.

Однако это не означает, что данный вид защиты должен применяться всегда и повсеместно. Дело в том, что у зануления имеется целый ряд недостатков, являющихся следствием особенностей его организации. Они проявляются в следующем:

  • Нулевой провод систем энергоснабжения имеет большую протяжённость и постоянно используется в активном режиме (как проводник, по которому протекает рабочий ток), вследствие чего со временем он может разрушиться;

Дополнительная информация. Указанное явление в технической литературе, а также в среде специалистов чаще всего упоминается как «отгорание нуля» (смотрите фото ниже).

  • В отличие от заземления, при обустройстве которого нет зависимости от фазы защищаемой линии, при занулении должны соблюдаться определенные условия подсоединения защитного проводника;
  • По своим возможностям оно ограничено, поскольку может использоваться только в цепях с наглухо заземлённой нейтралью в сетях TN-C-S, TN-C, TN-S (при наличии N, PE, PEN проводников).

В линиях, где подключение организовано по схеме с изолированной нейтралью (в системах IT и ТТ), по своему назначению более подходящих для промышленных объектов, оно работать не сможет.

Также эти два вида преднамеренной защиты отличаются и по области своего применения, а именно:

  • Зануление обычно применяется в многоэтажных жилых домах, где практически невозможно организовать полноценное заземление;
  • Повторное заземление более часто используется на промышленных предприятиях, где согласно ТБ к безопасности персонала предъявляются повышенные требования;
  • Этот же тип защиты чаще всего применяется в быту (в загородных домах, в частности), где возможностей для обустройства защитного контура имеется предостаточно (смотрите фото ниже).

Следует добавить, что защитное заземление и зануление отличаются ещё одним важным фактором. Дело в том, что в первом случае защита распространяется только на участок электрической цепи, на котором в аварийном режиме (при пробое изоляции) за счёт стекания тока в землю понизилось рабочее напряжение. При этом вся остальная часть снабжающей электричеством системы продолжает функционировать.

В отличие от действия заземляющего эффекта, при занулении данный участок линии электропитания отключается полностью.

Так что пытаться ответить на вопрос, в чём состоит их различие, будет не совсем корректно. Гораздо правильнее говорить о том, что заземление и зануление электроустановок должны использоваться совместно. Такое комбинированное их применение обеспечит более эффективную защиту от поражения током.

Подводя итог их сравнению, отметим, что принцип зануления состоит в превращении аварийной ситуации в однофазное замыкание, приводящее к срабатыванию станционной защитной автоматики. Заземление же, с одной стороны, представляет собой снижение потенциала опасной точки (уменьшение сопротивления заземлителя), а с другой – их выравнивание.

Оно в данном случае заключается в поднятии потенциала опоры со стоящим на ней человеком до уровня напряжения на заземлённом корпусе.

Дополнительные элементы

Как в случае с заземлением, так и при занулении для реализации защитных функций должны применяться дополнительные проводники (медные провода), обеспечивающие надёжное соединение с ЗУ или с нулёвым контактом, соответственно.

В первом случае этот проводник протягивается от защищаемой точки до контакта заземлителя и выполняется в виде медной оплётки. В ситуации с занулением такой же медный проводник прокладывается по скрытым местам помещений и других строений до распределительного шкафа, где его конец фиксируется на главной заземляющей шине (ГЗШ). Сюда же заводится нулевой рабочий проводник, входящий в состав подводящего электроэнергию силового кабеля.

Важно! Согласно требованиям организации зануления (смотрите ПУЭ), использование для крепления этих двух проводников одного болта или клеммного контакта недопустимо, что объясняется различными режимами их работы.

В завершении сравнения двух методов защиты объектов от поражения электрическим током необходимо отметить следующее. Оба эти способа (как зануление, так и заземление), по сути, выполняют одну и ту же функцию, состоящую в снижении опасного потенциала до приемлемого уровня. Занули вы какую-то точку оборудования или защити её с помощью ЗУ, эффект будет примерно один и тот же.

Видео

Практически каждый из нас слышал о том, что большинство бытовых приборов нужно заземлять, но мало кто может сказать, для чего, и как оно вообще работает. Еще меньше людей знают, что такое зануление, и совсем немногие могут ответить на вопрос о том, чем отличается ноль от земли. Тем не менее от правильного заземления или зануления зависит человеческая жизнь, поэтому приведенную в этой статье информацию без преувеличения можно назвать жизненно важной.

Предположим, вы купили стиральную машину и установили ее в ванной комнате, подключив к обычной розетке. В этом случае электрическая схема подключения будет выглядеть следующим образом:

Здесь буквами «Г» обозначен источник напряжения (скажем, стоящая во дворе трансформаторная подстанция), «П» — потребитель, то есть ваша стиральная машинка. Пока все в порядке. Генератор вырабатывает ток (слева на рисунке трехфазный, справа — обычный однофазный), этот ток бежит по «фазным» проводам (черного цвета), крутит мотор прибора и возвращается по синему, «нулевому», который на трансформаторной подстанции согласно ТУ обязательно соединен с землей. Корпус прибора, обозначенный серым цветом, естественно, не соединяется с электросетью, а значит, не находится под напряжением и его можно касаться.

Но что произойдет, если сетевое напряжение случайно (сыро, вибрации, перетерлась изоляция, брак и пр.) окажется на металлическом корпусе машинки? Ток как крутил мотор, так и продолжает крутить, все вроде в порядке. Но если вы коснетесь корпуса прибора, часть напряжения пойдет через ваше тело в землю, а что такое поражение электрическим током, известно всем:

Если корпус прибора не заземлен, то при малейшей неисправности оборудования человек может попасть под напряжение.

Причем для того чтобы попасть под опасный для жизни ток, совершенно необязательно стоять на сырой земле — для этого вполне достаточно, к примеру, водопроводных труб, или даже просто бетонного пола ванной комнаты.

Но если бы металлический корпус злосчастной стиральной машинки был соединен с той же землей, то все напряжение с неисправного прибора «стекло» бы в землю, и смертельной опасности не возникло.

Итак, чтобы защитить человека от случайного поражения электрическим током при неисправности оборудования, необходимо соединить открытые металлические части прибора (шасси, кожух и пр.) с землей.

Зануление — что это такое и как его сделать

Поскольку нулевой провод, как говорилось выше, уже заземлен у генератора или на трансформаторной подстанции, то проще всего заземлить кожух прибора, электрически соединив его с нулем прямо в самом приборе или розетке:

В этой схеме нижний провод является одновременно и питающим, и защитным.

Теперь если даже напряжение попадет на корпус устройства, оно стечет через провод, отмеченный красным, в землю. Если ток небольшой (так называемая «утечка»), то вы этого даже не заметите. Если неисправность серьезная, то произойдет короткое замыкание, и в электрощите или на подстанции сработает аварийная система защиты, отключая неисправный потребитель — вашу машинку, а заодно и полдома.

Напряжение с корпуса прибора «стекает» через ноль и для человека безопасно.

Казалось бы, нет ничего проще, но простота эта лишь кажущаяся. Во-первых, длина нулевого проводника от места заземления до вашей стиральной машины может быть очень большой — десятки и даже сотни метров. Если к подстанции подключено много потребителей, скажем, многоквартирный дом, то ток через «ноль» будет приличным, а значит, на проводе будет падать напряжение тем большее, чем длиннее провод. Таким образом, разность потенциалов между нулем в вашей розетке и реальной землей может достигать десятки вольт, что уже небезопасно. Если взяться за корпус прибора с таким потенциалом, стоя на сыром кафеле, можно попасть под опасное напряжение.

Еще один вариант. В результате аварии ноль в том или ином месте отгорает. Все электрооборудование окажется неработоспособным (току некуда течь), но все оно одновременно окажется под высоким напряжением, включая и корпуса зануленных приборов. Малейшее касание, казалось бы, обесточенного оборудования — и человек под током!

Таким образом, несмотря на всю простоту исполнения, зануление имеет существенные недостатки:

  1. Если длина нулевого провода велика, зануленный прибор все равно окажется под напряжением относительно земли — хоть и не полным сетевым, но не менее опасным.
  2. В случае обрыва нулевого провода все зануленное оборудование превращается в смертельно опасное. Причем опасность эта увеличивается многократно тем, что с виду оборудование кажется обесточенным — лампы не горят, чайник не греет, машинка не стирает.

Заземление: что это и чем отличается от зануления

Теперь пора выяснить, что такое заземление, а заодно и решить вопрос о том, чем отличается заземление от зануления. По сути, заземление — электрическое соединение с землей. Именно это и делают электрики на подстанциях и в электрощитах — заземляют нулевой провод. Но чем чревато зануление вы уже знаете — это было описано выше. Осталось решить такой вопрос: «Ноль и земля — в чем разница?»

Предположим, в вашей ванной комнате есть гипотетический болт с гайкой, надежно соединенный с землей. Если вы подключите к нему корпус вашей стиральной машины, то она окажется надежно заземлена, причем не «где-то там», на подстанции, а «здесь». Это и есть заземление.

Поскольку заземляющий провод имеет небольшую длину, целостность его легко контролировать визуально, а падения напряжения на нем, в отличие от нулевого провода, не может быть по определению, ведь в обычном режиме заземление не используется для питания электроприборов — для этого служит нулевой провод.

Пользоваться заземленным прибором можно абсолютно безопасно.

Итак, чем отличается ноль от заземления? Ответ очевиден: напряжение на заземлении относительно земли (простите за каламбур) всегда равно нулю. Напряжение же на нулевом проводе относительно земли далеко не всегда равно нулю, а потому утверждение «Прибор занулен, а значит, электробезопасен» не всегда есть истина.

Естественное или искусственное

В зависимости от поставленной задачи можно использовать естественное и ли искусственное заземление.

Естественное заземление, по сути, удачное стечение обстоятельств. Оно не создавалось специально для заземления приборов, но вполне может использоваться в этих целях. К примеру, водопроводный кран. Все трубы, подводящие к нему воду, находятся в земле, а значит, имеют с ней хороший электрический контакт (конечно, если они металлические). Рядом с домом вкопан длинный металлический шест или труба, скажем, молниеотвод. Они тоже могут применяться в качестве рабочего заземления.

Но и тут есть одно «но». Вы уверены, что водопровод надежно соединен с землей, а не лежит, скажем, в бетонных желобах? А может, сосед снизу решил заменить кусок стояка и разрезал его пополам? Неуверены, не знаете. Если вы заземлили прибор, «прикрутив» его кожух к водопроводному крану, и, не дай Бог, произошла авария, то в вышеуказанных случаях под опасным для жизни напряжением окажется весь водопроводный стояк, а значит, и десятки водопроводных кранов в десятках квартир!

Таким образом, естественное заземление можно использовать только в следующих случаях:

  1. Вы уверены, что используемая арматура (тот же водопровод) надежно соединена с землей и не может быть демонтирована без вашего ведома.
  2. Вы заземляете устройство, которое по определению не может оказаться под опасным для жизни напряжением. К примеру, корпус автономного приемника для более уверенного приема или жало паяльника, браслет для снятия статического электричества перед монтажом чувствительной к статике аппаратуры.

Во всех других случаях необходимо изготовить заземление самостоятельно, и называться оно будет искусственным.

Делаем искусственный вариант

Самостоятельно изготовить заземление совсем несложно, но потрудиться придется.

Прежде всего придется выкопать яму глубиной метра полтора, а если почва песчаная, то лучше два. В эту яму нужно уложить массивный металлический предмет. Подойдет лист железа, мятая старая бочка, кастрюля или ведро (не эмалированные!), рама какого-либо механизма, решетка, сваренная из арматуры или ненужных труб. Чем больше площадь предмета, тем надежнее будет заземление, но минимум — сплющенное ведро.

Можно поступить и по-другому. В дно ямы вбить толстую метровую трубу, уголок или даже ненужный лом. Площадь такого заземления будет меньше площади той же бочки, но зато оно будет расположено в более низких и сырых областях грунта. Теперь к этому предмету нужно приварить или, используя болты, надежно и прочно прикрутить толстый провод. Это может быть толстая железная проволока «катанка», арматура или просто толстый провод. Место соединения провода с предметом, который будет служить заземлением, нужно защитить от коррозии — покрасить, залить битумом и пр. Осталось закопать яму, утрамбовать землю и хорошенько ее полить обычной водой. Заземление готово!

Подробности

Зануление - защитит или убьет?

Здравствуйте, друзья!

В этой статье поговорим о том, что такое зануление, где оно применяется, а также об основных ошибках при его устройстве. Тема непростая, на форумах ведутся постоянные дебаты.

Интересно то, что часто даже электрики не могут правильно сказать, чем отличается зануление от заземления. Давайте разбираться. Для начала посмотрим, что о занулении говорится в ПУЭ.

Занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока

Попросту говоря, зануление - это соединение корпуса электрического прибора с нулевым проводом.

Теперь посмотрим, что говорит нам ПУЭ про заземление

Заземлением какой-либо части электроустановки или другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством.

Простыми словами, заземление - это соединение корпуса электрического прибора с заземлителем. Заземлитель - это конструкция из металлических штырей, вбитая в землю.

Теперь давайте посмотрим, как устроены самые распространенные системы электроснабжения многоквартирных домов.

Старая, советская система TN-C


Более современная система TN-C-S


В обеих схемах используется совмещенный нулевой проводник PEN, который заземляется на трансформаторной подстанции.

Основное различие между ними в том, что в TN-C-S происходит разделение совмещенного проводника на рабочий ноль и защитный проводник. Это делается в во вводном общедомовом щите (ВРУ). При этом обязательно производится повторное заземление.

Если внимательно посмотреть на схемы, становится понятно, что рабочий ноль всегда соединен с землей, то есть заземлен. И возникает вопрос: а в чем, собственно, разница между заземлением и занулением? Ведь соединив корпус прибора с рабочим нулем, мы фактически соединяем его и с землей.

На самом деле, разница есть. Она заключается в принципе действия.

Заземление предназначено для того, чтобы отводить ток на землю. Таким образом уменьшается опасное напряжение на корпусе прибора или устройства.


Зануление предназначено для создания эффекта короткого замыкания при пробое фазы на корпус. При этом срабатывает автомат и отключает аварийную линию.


Таким образом, зануление и заземление в системах TN работает одновременно, так сказать, в одном флаконе. Поэтому, 3-й защитный контакт в евророзетках в системах TN является и заземляющим и зануляющим.

Исходя из этого, правильно говорить о совмещенном проводнике PEN, рабочем нулевом проводнике N и защитном проводнике PE. При этом, даже электрики не всегда понимают разницу между PE и N, а она весьма существенная.

Обычно, когда какой-нибудь «электрик дядя Вася» говорит о занулении, то подразумевает разного рода колхоз типа перемычек в розетках и тому подобном соединении защитного провода с нулевым. И это опасно.

Неправильное зануление может вместо защиты может стать причиной трагедии.. А встречается такая псевдозащита очень, очень часто.

Давайте разберемся, как правильно делается защитное зануление и чего делать категорически нельзя.

Запомните, разделение совмещенного проводника на рабочий ноль и защитный ноль должно производиться в общедомовом вводном устройстве (ВРУ). И уже оттуда защитный проводник должен идти к этажным щитам, а от них в каждую квартиру.

Таким образом, мы получаем пятипроводный стояк: 3 фазы, рабочий ноль и защитный ноль. В этом случае речь о так называемом занулении не идет, поскольку в каждую квартиру приходит отдельный защитный провод (системы TN-C-S и TN-S) . Его и нужно подключать к третьему контакту розеток.

В старых домах с немодернизированной проводкой обычно идет четырехпроводный стояк: 3 фазы и совмещенный ноль PEN (система TN-C). Вот тут-то и начинается полнейший бардак и жуткие косяки.

Начинается все в этажном щите. Часто в нем делают самостоятельное разделение PEN на PE и N.

Этот вариант имеет право на жизнь, но только при соблюдении важных правил. Вот главные из них:

Правило 1. В однофазных цепях разделять нулевой провод запрещено (ПУЭ - 1.7.132).

Как определить, какая сеть в вашем доме? В относительно нестарых домах подъездные стояки четырехпроводные: три фазы и один совмещенный ноль (PEN). То есть используется трехфазные стояки, соответственно трехфазная цепь.

В очень старых домах, сталинках и хрущевках, часто используется двухпроводный стояк, в котором только фаза и рабочий ноль. Отличительная особенность таких домов - отсутствие подъездных щитов. Стояки идут в шахтах между квартирами, а в самих квартирах специфические «горбатые» щитки. Вот в таких домах, как правило, используется однофазная сеть.

Правило 2. Совмещенный проводник PEN должен быть сечением не менее 16 мм по алюминию или 10 мм по меди.

То есть нулевой стояк должен быть сечением не меньше указанного. Во многих домах сечение меньше, в этом случае разделять совмещенный ноль на защитный и рабочий нельзя. Если у вас дом советской постройки с газовыми плитами, то в 80% случаев стояк в нем хилый.

Правило 3. После разделения PEN на PE и N нельзя вновь их соединять.

Здесь, думаю, пояснений не надо.

Правило 4. Защитный проводник PE должен быть неотключаемым.

То есть на него нельзя ставить автоматы и прочие разъединяющие устройства.

Правило 5. Разделять PEN нужно ДО всех автоматов, рубильников, выключателей.

Лучше сделать так: взять латунную шину и прикрутить ее винтами к щиту, чтобы между ними был контакт. От нулевого стояка через отдельный орех сделать отвод на эту шину. К шине подсоединить защитные провода PE из квартир.

Если не выполнено хотя бы одно их этих правил, то это будет не защита, а опасный для жизни колхоз.

Еще немного о том, чего делать нельзя

1) Соединять перемычкой защитный и нулевой контакты в розетке. Это одна из самых опасных ошибок!

При отгорании, повреждении или случайном отсоединении нуля, на корпусе всех приборов, подключенных к таким розеткам, сразу появится опасное фазное напряжение. В этом случае ни УЗО, ни автомат не сработают. Привет, смерть.

Тот же эффект будет при случайной смене фазы и нуля.

2) Сажать нулевой и защитный проводники на один винт в щитке

PE и N обязательно должны быть на разных зажимах (шинах). Причем, каждый провод из отдельной квартиры должен быть зажат отдельным винтом.

3) Занулять на незаземленный (незануленный) щит.

Обычно все щиты имеют прямой контакт с нулевым или защитным стояком (занулены). Но иногда контакта нет, по разным причинам. Например, отвалился соединяющий провод. Зануление на такой щит может привести к появлению на его корпусе опасного напряжения.

На практике, подобного рода косяки встречаются сплошь и рядом, в различных вариантах и сочетаниях. Могу посоветовать не полениться, изучить ПУЭ, а также не доверять свою проводку сомнительным личностям.