Теплотехнический расчет наружной стены из керамического кирпича. Как сделать теплотехнический расчёт наружных стен малоэтажного здания? Как делать теплотехнический расчет стен дома – основные параметры
Требуется определить толщину утеплителя в трехслойной кирпичной наружной стене в жилом здании, расположенном в г. Омске. Конструкция стены: внутренний слой – кирпичная кладка из обыкновенного глиняного кирпича толщиной 250 мм и плотностью 1800 кг/м 3 , наружный слой – кирпичная кладка из облицовочного кирпича толщиной 120 мм и плотностью 1800 кг/м 3 ; между наружным и внутренними слоями расположен эффективный утеплитель из пенополистирола плотностью 40 кг/м 3 ; наружный и внутренний слои соединяются между собой стеклопластиковыми гибкими связями диаметром 8 мм, расположенными с шагом 0,6 м.
1. Исходные данные
Назначение здания – жилой дом
Район строительства – г. Омск
Расчетная температура внутреннего воздуха t int = плюс 20 0 С
Расчетная температура наружного воздуха t ext = минус 37 0 С
Расчетная влажность внутреннего воздуха – 55%
2. Определение нормируемого сопротивления теплопередаче
Определяется по таблице 4 в зависимости от градусо-суток отопительного периода. Градусо-сутки отопительного периода, D d , °С×сут, определяют по формуле 1, исходя из средней температуры наружного воздуха и продолжительности отопительного периода.
По СНиП 23-01-99* определяем, что в г. Омске средняя температура наружного воздуха отопительного периода равна: t ht = -8,4 0 С , продолжительность отопительного периода z ht = 221 сут. Величина градусо-суток отопительного периода равна:
D d = (t int - t ht ) z ht = (20 + 8,4)×221 = 6276 0 С сут.
Согласно табл. 4. нормируемое сопротивление теплопередаче R reg наружных стен для жилых зданий соответствующее значению D d = 6276 0 С сут равно R reg = a D d + b = 0,00035×6276 + 1,4 = 3,60 м 2 0 С/Вт.
3. Выбор конструктивного решения наружной стены
Конструктивное решение наружной стены предложено в задании и представляет собой трехслойное ограждение с внутренним слоем из кирпичной кладки толщиной 250 мм, наружным слоем из кирпичной кладки толщиной 120 мм, между наружным и внутренним слоем расположен утеплитель из пенополистирола. Наружный и внутренний слой соединяются между собой гибкими связями из стеклопластика диаметром 8 мм, расположенными с шагом 0,6 м.
4. Определение толщины утеплителя
Толщина утеплителя определяется по формуле 7:
d ут = (R reg ./r – 1/a int – d кк /l кк – 1/a ext)× l ут
где R reg . – нормируемое сопротивление теплопередаче, м 2 0 С/Вт; r – коэффициент теплотехнической однородности; a int – коэффициент теплоотдачи внутренней поверхности, Вт/(м 2 ×°С); a ext – коэффициент теплоотдачи наружной поверхности, Вт/(м 2 ×°С); d кк – толщина кирпичной кладки, м ; l кк – расчетный коэффициент теплопроводности кирпичной кладки, Вт/(м×°С) ; l ут – расчетный коэффициент теплопроводности утеплителя, Вт/(м×°С) .
Нормируемое сопротивление теплопередаче определено: R reg = 3,60 м 2 0 С/Вт.
Коэффициент теплотехнической однородности для кирпичной трехслойной стены со стеклопластиковыми гибкими связями составляет около r=0,995 , и в расчетах может не учитываться (для информации – если применили стальные гибкие связи, то коэффициент теплотехнической однородности может достигать 0,6-0,7) .
Коэффициент теплоотдачи внутренней поверхности определяется по табл. 7 a int = 8,7 Вт/(м 2 ×°С).
Коэффициент теплоотдачи наружной поверхности принимается по таблице 8 a е xt = 23 Вт/(м 2 ×°С).
Суммарная толщина кирпичной кладки составляет 370 мм или 0,37 м.
Расчетные коэффициенты теплопроводности используемых материалов определяются в зависимости от условий эксплуатации (А или Б). Условия эксплуатации определяются в следующей последовательности:
По табл. 1 определяем влажностный режим помещений: так как расчетная температура внутреннего воздуха +20 0 С, расчетная влажность 55%, влажностный режим помещений – нормальный;
По приложению В (карта РФ) определяем, что г. Омск расположен в сухой зоне;
По табл. 2 , в зависимости от зоны влажности и влажностного режима помещений, определяем, что условия эксплуатации ограждающих конструкций – А .
По прил. Д определяем коэффициенты теплопроводности для условий эксплуатации А: для пенополистирола ГОСТ 15588-86 плотностью 40 кг/м 3 l ут = 0,041 Вт/(м×°С) ; для кирпичной кладки из глиняного обыкновенного кирпича на цементно-песчаном растворе плотностью 1800 кг/м 3 l кк = 0,7 Вт/(м×°С) .
Подставим все определенные значения в формулу 7 и рассчитываем минимальную толщину утеплителя из пенополистирола:
d ут = (3,60 – 1/8,7 – 0,37/0,7 – 1/23)× 0,041 = 0,1194 м
Округляем полученное значение в большую сторону с точностью до 0,01 м: d ут = 0,12 м. Выполняем проверочный расчет по формуле 5:
R 0 = (1/a i + d кк /l кк + d ут /l ут + 1/a e)
R 0 = (1/8,7 + 0,37/0,7 + 0,12/0,041 + 1/23) = 3,61 м 2 0 С/Вт
5. Ограничение температуры и конденсации влаги на внутренней поверхности ограждающей конструкции
Δt o , °С, между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции не должен превышать нормируемых величин Δt n , °С, установленных в таблице 5 , и определен следующим образом
Δt o = n(t int – t ext )/( R 0 a int) = 1(20+37)/(3,61 х 8,7) = 1,8 0 С т.е. меньше, чем Δt n , = 4,0 0 С, определенное по таблице 5 .
Вывод: т олщина утеплителя из пенополистирола в трехслойной кирпичной стене составляет 120 мм. При этом сопротивление теплопередаче наружной стены R 0 = 3,61 м 2 0 С/Вт , что больше нормируемого сопротивления теплопередаче R reg . = 3,60 м 2 0 С/Вт на 0,01м 2 0 С/Вт. Расчетный температурный перепад Δt o , °С, между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции не превышает нормативное значение Δt n , .
Пример теплотехнический расчета светопрозрачных ограждающих конструкций
Светопрозрачные ограждающие конструкции (окна) подбирают по следующей методике.
Нормируемое сопротивление теплопередаче R reg определяется по таблице 4 СНиП 23-02-2003 (колонка 6) в зависимости от градусо-суток отопительного периода D d . При этом тип здания и D d принимают как в предыдущем примере теплотехнического расчета светонепрозрачных ограждающих конструкций. В нашем случае D d = 6276 0 С сут, тогда для окна жилого дома R reg = a D d + b = 0,00005×6276 + 0,3 = 0,61 м 2 0 С/Вт.
Выбор светопрозрачных конструкций осуществляется по значению приведенного сопротивления теплопередаче R o r , полученному в результате сертификационных испытаний или по приложению Л Свода правил . Если приведенное сопротивление теплопередаче выбранной светопрозрачной конструкции R o r , больше или равно R reg , то эта конструкция удовлетворяет требованиям норм.
Вывод: для жилого дома в г. Омске принимаем окна в ПВХ-переплетах с двухкамерными стеклопакетами из стекла с твердым селективным покрытием и заполнением аргоном межстекольного пространства у которых R о r = 0,65 м 2 0 С/Вт больше R reg = 0,61 м 2 0 С/Вт.
ЛИТЕРАТУРА
- СНиП 23-02-2003. Тепловая защита зданий.
- СП 23-101-2004. Проектирование тепловой защиты.
- СНиП 23-01-99*. Строительная климатология.
- СНиП 31-01-2003. Здания жилые многоквартирные.
- СНиП 2.08.02-89 * . Общественные здания и сооружения.
В климатических условиях северных географических широт для строителей и архитекторов крайне важен верно сделанный тепловой расчет здания. Полученные показатели дадут для проектирования необходимые сведения, в том числе и об используемых материалах для строительства, дополнительных утеплителях, перекрытиях и даже об отделке.
В целом теплорасчет влияет на несколько процедур:
- учет проектировщиками при планировании расположения комнат, несущих стен и ограждений;
- создание проекта отопительной системы и вентиляционных сооружений;
- подбор стройматериалов;
- анализ условий эксплуатации постройки.
Все это связано едиными значениями, полученными в результате расчетных операций. В этой статье мы расскажем, как сделать теплотехнический расчет наружной стены здания, а также приведем примеры использования этой технологии.
Задачи проведения процедуры
Ряд целей актуален только для жилых домов или, напротив, промышленных помещений, но большинство решаемых проблем подходит для всех построек:
- Сохранение комфортных климатических условий внутри комнат. В термин «комфорт» входит как отопительная система, так и естественные условия нагревания поверхности стен, крыши, использование всех источников тепла. Это же понятие включают и систему кондиционирования. Без должной вентиляции, особенно на производстве, помещения будут непригодны для работы.
- Экономия электроэнергии и других ресурсов на отопление. Здесь имеют место следующие значения:
- удельная теплоемкость используемых материалов и обшивки;
- климат снаружи здания;
- мощность отопления.
Крайне неэкономично проводить отопительную систему, которая просто не будет использоваться в должной степени, но зато будет трудна в установлении и дорога в обслуживании. То же правило можно отнести к дорогостоящим стройматериалам.
Теплотехнический расчет – что это
Теплорасчет позволяет установить оптимальную (две границы – минимальная и максимальная) толщину стен ограждающих и несущих конструкций, которые обеспечат длительную эксплуатацию без промерзаний и перегревов перекрытий и перегородок. Иначе говоря, эта процедура позволяет вычислить реальную или предполагаемую, если она проводится на этапе проектирования, тепловую нагрузку здания, которая будет считаться нормой.
В основу анализа входят следующие данные:
- конструкция помещения – наличие перегородок, теплоотражающих элементов, высота потолков и пр.;
- особенности климатического режима в данной местности – максимальные и минимальные границы температур, разница и стремительность температурных перепадов;
- расположенность строения по сторонам света, то есть учет поглощения солнечного тепла, на какое время суток приходится максимальная восприимчивость тепла от солнца;
- механические воздействия и физические свойства строительного объекта;
- показатели влажности воздуха, наличие или отсутствие защиты стен от проникновения влаги, присутствие герметиков, в том числе герметизирующих пропиток;
- работа естественной или искусственной вентиляции, присутствие «парникового эффекта», паропроницаемость и многое другое.
При этом оценка этих показателей должна соответствовать ряду норм – уровню сопротивления теплопередаче, воздухопроницаемости и пр. Рассмотрим их подробнее.
Требования по теплотехническому расчету помещения и сопутствующая документация
Государственные проверяющие органы, руководящие организацией и регламентацией строительства, а также проверкой выполнения техники безопасности, составили СНиП № 23-02-2003, в котором подробно излагаются нормы проведения мероприятий по тепловой защите зданий.
Документ предлагает инженерные решения, которые обеспечат наиболее экономичный расход теплоэнергии, которая уходит на отопление помещений (жилых или промышленных, муниципальных) в отопительный период. Эти рекомендации и требования были разработаны с учетом вентиляции, конверсии воздуха, а также со вниманием к месторасположению точек поступления тепла.
СНиП – это законопроект на федеральном уровне. Региональная документация представлена в виде ТСН – территориально-строительных норм.
Не все постройки входят в юрисдикцию этих сводов. В частности, не проверяются по этим требованиям те строения, которые отапливаются нерегулярно или вовсе сконструированы без отопления. Обязательным теплорасчет является для следующих зданий:
- жилые – частные и многоквартирные дома;
- общественные, муниципальные – офисы, школы, больницы, детские сады и пр.;
- производственные – заводы, концерны, элеваторы;
- сельскохозяйственные – любые отапливаемые постройки с/х назначения;
- складские – амбары, склады.
В тексте документа прописаны нормы для всех тех составляющих, которые входят в теплотехнический анализ.
Требования к конструкциям:
- Теплоизоляция. Это не только сохранение тепла в холодное время года и недопущение переохлаждений, промерзаний, но и защита от перегрева летом. Изоляция, таким образом, должна быть обоюдосторонней – предупреждение влияний извне и отдачи энергии изнутри.
- Допустимое значение перепада температур между атмосферой внутри здания и терморежимом внутренней части ограждающих конструкций. Это приведет к скоплению конденсата на стенах, а также к негативному влиянию на здоровье людей, находящихся в помещении.
- Теплоустойчивость, то есть температурная стабильность, недопущение резких перемен в нагреваемом воздухе.
- Воздухопроницаемость. Здесь важен баланс. С одной стороны, нельзя допустить остывания постройки из-за активной отдачи тепла, с другой стороны, важно предупредить появление «парникового эффекта». Он бывает, когда использован синтетический, «недышащий» утеплитель.
- Отсутствие сырости. Повышенная влажность – это не только причина для появления плесени, но и показатель, из-за которого происходят серьезные потери теплоэнергии.
Как делать теплотехнический расчет стен дома – основные параметры
Перед тем как приступить к непосредственному теплорасчету, нужно собрать подробные сведения о постройке. В отчет будут входить ответы на следующие пункты:
- Назначение здания – жилое это, промышленное или общественное помещение, конкретное предназначение.
- Географическая широта участка, где находится или будет располагаться объект.
- Климатические особенности местности.
- Направление стен по сторонам света.
- Размеры входных конструкций и оконных рам – их высота, ширина, проницаемость, тип окон – деревянные, пластиковые и пр.
- Мощность отопительного оборудования, схема расположения труб, батарей.
- Среднее количество жильцов или посетителей, работников, если это промышленные помещения, которые находятся внутри стен единовременно.
- Стройматериалы, из которых выполнены полы, перекрытия и любые другие элементы.
- Наличие или отсутствие подачи горячей воды, тип системы, которая за это отвечает.
- Особенности вентиляции, как естественной (окна), так и искусственной – вентиляционные шахты, кондиционирование.
- Конфигурация всего строения – количество этажей, общая и отдельная площадь помещений, расположение комнат.
Когда эти данные будут собраны, инженер может приступать к расчету.
Мы предлагаем вам три метода, которыми чаще всего пользуются специалисты. Также можно использовать комбинированный способ, когда факты берутся из всех трех возможностей.
Варианты теплового расчета ограждающих конструкций
Вот три показателя, которые будут приниматься за главный:
- площадь постройки изнутри;
- объем снаружи;
- специализированные коэффициенты теплопроводности материалов.
Теплорасчет по площади помещений
Не самый экономичный, но наиболее частотный, особенно в России, способ. Он предполагает примитивные вычисления исходя из площадного показателя. При этом не учитывается климат, полоса, минимальные и максимальные температурные значения, влажность и пр.
Также в учет не берут основные источники теплопотерь, такие как:
- Вентиляционная система – 30-40%.
- Скаты крыши – 10-25%.
- Окна и двери – 15-25%.
- Стены – 20-30%.
- Пол на грунте – 5-10%.
Эти неточности из-за неучета большинства важных элементов приводят к тому, что сам теплорасчет может иметь сильную погрешность в обе стороны. Обычно инженеры оставляют «запас», поэтому приходится устанавливать такое отопительное оборудование, которое полностью не задействуется или грозит сильному перегреву. Нередки случаи, когда одновременно монтируют отопление и систему кондиционирования, так как не могут правильно рассчитать теплопотери и теплопоступления.
Используют «укрупненные» показатели. Минусы такого подхода:
- дорогостоящее отопительное оборудование и материалы;
- некомфортный микроклимат внутри помещения;
- дополнительная установка автоматизированного контроля за температурным режимом;
- возможные промерзания стен зимой.
Q=S*100 Вт (150 Вт)
- Q – количество тепла, необходимое для комфортного климата во всем здании;
- Вт S – отапливаемая площадь помещения, м.
Значение 100-150 Ватт является удельным показателем количества тепловой энергии, приходящейся для обогрева 1 м.
Если вы выбираете этот метод, то прислушайтесь к следующим советам:
- Если высота стен (до потолка) не более трех метров, а количество окон и дверей на одну поверхность 1 или 2, то умножайте полученный результат на 100 Вт. Обычно все жилые дома, как частные, так и многоквартирные, используют это значение.
- Если в конструкции присутствуют два оконных проема или балкон, лоджия, то показатель возрастает до 120-130 Вт.
- Для промышленных и складских помещений чаще берется коэффициент в 150 Вт.
- При выборе отопительных приборов (радиаторов), если они будут расположены возле окна, стоит прибавить их проектируемую мощность на 20-30%.
Теплорасчет ограждающих конструкций по объему здания
Обычно такой способ используется для тех строений, где высокие потолки – более 3 метров. То есть промышленные объекты. Минусом такого способа является то, что не учитывается конверсия воздуха, то есть то, что вверху всегда теплее, чем внизу.
Q=V*41 Вт (34 Вт)
- V – наружный объем строения в м куб;
- 41 Вт – удельное количество тепла, необходимое для обогрева одного кубометра здания. Если строительство ведется с применением современных строительных материалов, то показатель равен 34 Вт.
- Стекла в окнах:
- двойной пакет – 1;
- переплет – 1,25.
- Материалы утеплителя:
- новые современные разработки – 0,85;
- стандартная кирпичная кладка в два слоя – 1;
- малая толщина стен – 1,30.
- Температура воздуха зимой:
- -10 – 0,7;
- -15 – 0,9;
- -20 – 1,1;
- -25 – 1,3.
- Процент окон в сравнении с общей поверхностью:
- 10% – 0,8;
- 20% – 0,9;
- 30% – 1;
- 40% – 1,1;
- 50% – 1,2.
Все эти погрешности могут и должны быть учтены, однако, редко используются в реальном строительстве.
Пример теплотехнического расчета наружных ограждающих конструкций здания методом анализа используемого утеплителя
Если вы самостоятельно возводите жилой дом или коттедж, то мы настоятельно рекомендуем продумать все до мелочей, чтобы в итоге сэкономить и сделать оптимальный климат внутри, обеспечить долгую эксплуатацию объекта.
Для этого нужно решить две задачи:
- сделать правильный теплорасчет;
- установить систему отопления.
Данные для примера:
- угловая жилая комната;
- одно окно – 8,12 м кв;
- регион – Московская область;
- толщина стен – 200 мм;
- площадь по наружным параметрам – 3000*3000.
Необходимо выяснить, какая мощность нужна для обогрева 1 м кв помещения. Результатом будет Qуд = 70 Вт. Если утеплитель (толщина стен) будет меньше, то значения также будут ниже. Сравним:
- 100 мм – Qуд= 103 Вт.
- 150 мм – Qуд= 81 Вт.
Этот показатель будет учитываться при прокладке отопления.
Программное обеспечение при проектировании отопительной системы
С помощью компьютерных программ от компании «ЗВСОФТ» можно рассчитать все материалы, затраченные на отопление, а также сделать подробный поэтажный план коммуникаций с отображением радиаторов, удельной теплоемкости, энергозатрат, узлов.
Фирма предлагает базовый САПР для проектных работ любой сложности – . В нем можно не только сконструировать отопительную систему, но и создать подробную схему для строительства всего дома. Это можно реализовать благодаря большому функционалу, числу инструментов, а также работе в двух– и трехмерном пространстве.
К базовому софту можно установить надстройку . Эта программа разработана для проектирования всех инженерных систем, в том числе для отопления. С помощью легкой трассировки линий и функции наслоения планов можно спроектировать на одном чертеже несколько коммуникаций – водоснабжение, электричество и пр.
Перед постройкой дома сделайте теплотехнический расчет. Это поможет вам не ошибиться с выбором оборудования и покупкой стройматериалов и утеплителей.
Давным-давно здания и сооружения строились, не задумываясь о том, какими теплопроводными качествами обладают ограждающие конструкции. Другими словами, стены делались просто толстыми. И если вам когда-нибудь случалось быть в старых купеческих домах, то вы могли заметить, что наружные стены этих домов выполнены из керамического кирпича, толщина которых составляет порядка 1,5 метров. Такая толщина кирпичной стены обеспечивала и обеспечивает до сих пор вполне комфортное пребывание людей в этих домах даже в самые лютые морозы.
В настоящее же время все изменилось. И сейчас экономически не выгодно делать стены такими толстыми. Поэтому были придуманы материалы, которые могут ее уменьшить. Одни из них: утеплители и газосиликатные блоки. Благодаря этим материалам, например, толщина кирпичной кладки может быть снижена до 250 мм.
Теперь стены и перекрытия чаще всего делают 2-х или 3-х слойными, одним слоем из которых является материал с хорошими теплоизоляционными свойствами. А для того, чтобы определить оптимальную толщину этого материала, проводится теплотехнический расчет и определяется точка росы.
Как производится расчет по определению точки росы вы можете ознакомиться на следующей странице. Здесь же будет рассмотрен теплотехнический расчет на примере.
Необходимые нормативные документы
Для расчета потребуются два СНиПа, один СП, один ГОСТ и одно пособие:
- СНиП 23-02-2003 (СП 50.13330.2012). "Тепловая защита зданий". Актуализированная редакция от 2012 года .
- СНиП 23-01-99* (СП 131.13330.2012). "Строительная климатология". Актуализированная редакция от 2012 года .
- СП 23-101-2004. "Проектирование тепловой защиты зданий" .
- ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). "Здания жилые и общественные. Параметры микроклимата в помещениях" .
- Пособие. Е.Г. Малявина "Теплопотери здания. Справочное пособие" .
Рассчитываемые параметры
В процессе выполнения теплотехнического расчета определяют:
- теплотехнические характеристики строительных материалов ограждающих конструкций;
- приведённое сопротивление теплопередачи;
- соответствие этого приведённого сопротивления нормативному значению.
Пример. Теплотехнический расчет трехслойной стены без воздушной прослойки
Исходные данные
1. Климат местности и микроклимат помещения
Район строительства: г. Нижний Новгород.
Назначение здания: жилое .
Расчетная относительная влажность внутреннего воздуха из условия не выпадения конденсата на внутренних поверхностях наружных ограждений равна - 55% (СНиП 23-02-2003 п.4.3. табл.1 для нормального влажностного режима).
Оптимальная температура воздуха в жилой комнате в холодный период года t int = 20°С (ГОСТ 30494-96 табл.1).
Расчетная температура наружного воздуха t ext , определяемая по температуре наиболее холодной пятидневки обеспеченностью 0,92 = -31°С (СНиП 23-01-99 табл. 1 столбец 5);
Продолжительность отопительного периода со средней суточной температурой наружного воздуха 8°С равна z ht = 215 сут (СНиП 23-01-99 табл. 1 столбец 11);
Средняя температура наружного воздуха за отопительный период t ht = -4,1°С (СНиП 23-01-99 табл. 1 столбец 12).
2. Конструкция стены
Стена состоит из следующих слоев:
- Кирпич декоративный (бессер) толщиной 90 мм;
- утеплитель (минераловатная плита), на рисунке его толщина обозначена знаком "Х", так как она будет найдена в процессе расчета;
- силикатный кирпич толщиной 250 мм;
- штукатурка (сложный раствор), дополнительный слой для получения более объективной картины, так как его влияние минимально, но есть.
3. Теплофизические характеристики материалов
Значения характеристик материалов сведены в таблицу.
Примечание (*): Данные характеристики можно также найти у производителей теплоизоляционных материалов.
Расчет
4. Определение толщины утеплителя
Для расчета толщины теплоизоляционного слоя необходимо определить сопротивление теплопередачи ограждающей конструкции исходя из требований санитарных норм и энергосбережения.
4.1. Определение нормы тепловой защиты по условию энергосбережения
Определение градусо-суток отопительного периода по п.5.3 СНиП 23-02-2003:
D d = ( t int - t ht ) z ht = (20 + 4,1)215 = 5182°С×сут
Примечание:
также градусо-сутки имеют обозначение - ГСОП.
Нормативное значение приведенного сопротивления теплопередаче следует принимать не менее нормируемых значений, определяемых по СНИП 23-02-2003 (табл.4) в зависимости от градусо-суток района строительства:
R req = a×D d + b = 0,00035 × 5182 + 1,4 = 3,214м 2 × °С/Вт ,
где: Dd - градусо-сутки отопительного периода в Нижнем Новгороде,
a и b - коэффициенты, принимаемые по таблице 4 (если СНиП 23-02-2003) или по таблице 3 (если СП 50.13330.2012) для стен жилого здания (столбец 3).
4.1. Определение нормы тепловой защиты по условию санитарии
В нашем случае рассматривается в качестве примера, так как данный показатель рассчитывается для производственных зданий с избытками явной теплоты более 23 Вт/м 3 и зданий, предназначенных для сезонной эксплуатации (осенью или весной), а также зданий с расчетной температурой внутреннего воздуха 12 °С и ниже приведенное сопротивление теплопередаче ограждающих конструкций (за исключением светопрозрачных).
Определение нормативного (максимально допустимого) сопротивления теплопередаче по условию санитарии (формула 3 СНиП 23-02-2003):
где: n = 1 - коэффициент, принятый по таблице 6 для наружной стены;
t int = 20°С - значение из исходных данных;
t ext = -31°С - значение из исходных данных;
Δt n = 4°С - нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимается по таблице 5 в данном случае для наружных стен жилых зданий;
α int = 8,7 Вт/(м 2 ×°С) - коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 для наружных стен.
4.3. Норма тепловой защиты
Из приведенных выше вычислений за требуемое сопротивление теплопередачи выбираем R req из условия энергосбережения и обозначаем его теперь R тр0 =3,214м 2 × °С/Вт .
5. Определение толщины утеплителя
Для каждого слоя заданной стены необходимо рассчитать термическое сопротивление по формуле:
где: δi- толщина слоя, мм;
λ i - расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).
1 слой (декоративный кирпич): R 1 = 0,09/0,96 = 0,094 м 2 × °С/Вт .
3 слой (силикатный кирпич): R 3 = 0,25/0,87 = 0,287 м 2 × °С/Вт .
4 слой (штукатурка): R 4 = 0,02/0,87 = 0,023 м 2 × °С/Вт .
Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала (формула 5.6 Е.Г. Малявина "Теплопотери здания. Справочное пособие"):
где: R int = 1/α int = 1/8,7 - сопротивление теплообмену на внутренней поверхности;
R ext = 1/α ext = 1/23 - сопротивление теплообмену на наружной поверхности, α ext принимается по таблице 14 для наружных стен;
ΣR i = 0,094 + 0,287 + 0,023 - сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м 2 ·°С/Вт
Толщина утеплителя равна (формула 5,7 ):
где: λ ут - коэффициент теплопроводности материала утеплителя, Вт/(м·°С).
Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм (формула 5.8 ):
где: ΣR т,i - сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м 2 ·°С/Вт.
Из полученного результата можно сделать вывод, что
R 0 = 3,503м 2 × °С/Вт > R тр0 = 3,214м 2 × °С/Вт → следовательно, толщина утеплителя подобрана правильно .
Влияние воздушной прослойки
В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20-40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.
Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:
а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае - это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;
б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи α ext = 10,8 Вт/(м°С).
Примечание: влияние воздушной прослойки учитывается, например, при теплотехническом расчете пластиковых стеклопакетов.
Пример теплотехнического расчета ограждающих конструкций
1. Исходные данные
Техническое задание. В связи с неудовлетворительным тепло-влажностным режимом здания необходимо произвести утепление его стен и мансардной крыши. С этой целью выполнить расчеты термического сопротивления, теплоустойчивости, воздухо- и паропроницаемости ограждающих конструкций здания с оценкой возможности конденсации влаги в толще ограждений. Установить необходимую толщину теплоизоляционного слоя, необходимость применения ветро- и пароизоляции, порядок расположения слоев в конструкции. Разработать проектное решение, отвечающее требованиям СНиП 23-02-2003 «Тепловая защита зданий» к ограждающим конструкциям. Расчеты выполнить в соответствии со сводом правил по проектированию и строительству СП 23-101-2004 "Проектирование тепловой защиты зданий".
Общая характеристика здания. Двухэтажное жилое здание с мансардой расположено в пос. Свирица Ленинградской области. Общая площадь наружных ограждающих конструкций - 585,4 м 2 ; общая площадь стен 342,5 м 2 ; общая площадь окон 51,2 м 2 ; площадь крыши – 386 м 2 ; высота подвала - 2,4 м.
Конструктивная схема здания включает несущие стены, железобетонные перекрытия из многопустотных панелей, толщиной 220 мм и бетонный фундамент. Наружные стены выполнены из кирпичной кладки и оштукатурены изнутри и снаружи строительным раствором слоем около 2 см.
Покрытие здания имеет стропильную конструкцию со стальной фальцевой кровлей, выполненной по обрешетке с шагом 250 мм. Утеплитель толщиной 100 мм выполнен из минераловатных плит, уложенных между стропилами
В здании предусмотрено стационарное электро-теплоаккумуляционное отопление. Подвал имеет техническое назначение.
Климатические параметры. Согласно СНиП 23-02-2003 и ГОСТ 30494-96 расчетную среднюю температуру внутреннего воздуха принимаем равной
t int = 20 °С.
Согласно СНиП 23-01-99 принимаем:
1) расчетную температуру наружного воздуха в холодный период года для условий пос. Свирица Ленинградской области
t ext = -29 °С;
2) продолжительность отопительного периода
z ht = 228 сут.;
3) среднюю температуру наружного воздуха за отопительный период
t ht = -2,9 °С.
Коэффициенты теплоотдачи. Значения коэффициента теплоотдачивнутренней поверхности ограждений принимаем:для стен, полов и гладких потолков α int = 8,7 Вт/(м 2 ·ºС).
Значения коэффициента теплоотдачи наружнойповерхности ограждений принимаем:для стен и покрытий α ext =23; перекрытий чердачных α ext =12 Вт/(м 2 ·ºС);
Нормируемое сопротивление теплопередаче. Градусо-сутки отопительного периода G d определяются по формуле (1)
G d = 5221 °С·сут.
Поскольку значение G d отличается от табличных значений, нормативное значение R req определяем по формуле (2).
Согласно СНиП 23-02-2003 для полученного значения градусо-суток нормируемое сопротивление теплопередаче R req , м 2 ·°С/Вт, составляет:
Для наружных стен 3,23;
Покрытий и перекрытий над проездами 4,81;
Ограждений над неотапливаемыми подпольями и подвалами 4,25;
Окон и балконных дверей 0,54.
2. Теплотехнический расчет наружных стен
2.1. Сопротивление наружных стен теплопередаче
Наружные стены выполнены из пустотелого керамического кирпича и имеют толщину 510 мм. Стены оштукатурены изнутри известково-цементным раствором толщиной 20 мм, снаружи – цементным раствором той же толщины.
Характеристики данных материалов – плотность γ 0 , коэффициент теплопроводности в сухом состоянии 0 и коэффициент паропроницаемости μ – принимаем по табл. П.9 приложения. При этом в расчетах используем коэффициенты теплопроводности материалов W для условий эксплуатации Б, (для влажных условий эксплуатации), которые получаем по формуле (2.5). Имеем:
Для известково-цементного раствора
γ 0 = 1700 кг/м 3 ,
W =0,52(1+0,168·4)=0,87 Вт/(м·°С),
μ=0,098 мг/(м·ч·Па);
Для кирпичной кладки из пустотелого керамического кирпича на цементно-песчаном растворе
γ 0 = 1400 кг/м 3 ,
W =0,41(1+0,207·2)=0,58 Вт/(м·°С),
μ=0,16 мг/(м·ч·Па);
Для цементного раствора
γ 0 = 1800 кг/м 3 ,
W =0,58(1+0,151·4)=0,93 Вт/(м·°С),
μ=0,09 мг/(м·ч·Па).
Сопротивление теплопередаче стены без утепления равно
R о = 1/8,7 + 0,02/0,87 + 0,51/0,58 + 0,02/0,93 + 1/23 = 1,08 м 2 ·°С/Вт.
При наличии оконных проемов, образующих откосы стены, коэффициент теплотехнической однородности кирпичных стен, толщиной 510 мм принимаем r = 0,74.
Тогда приведенное сопротивление теплопередаче стен здания, определяемое по формуле (2.7), равно
R r о =0,74·1,08=0,80 м 2 ·°С/Вт.
Полученное значение намного ниже нормативного значения сопротивления теплопередаче, поэтому необходимо устройство наружной теплоизоляции и последующее оштукатуривание защитным и декоративным составами штукатурного раствора с армированием стеклосеткой.
Для возможности просыхания теплоизоляции закрывающий ее штукатурный слой должен быть паропроницаемым, т.е. пористым с малой плотностью. Выбираем поризованный цементно-перлитовый раствор, имеющий следующие характеристики:
γ 0 = 400 кг/м 3 ,
0 = 0,09 Вт/(м·°С),
W =0,09(1+0,067·10)=0,15 Вт/(м·°С),
= 0,53 мг/(м·ч·Па).
Суммарное сопротивление теплопередаче добавляемых слоев теплоизоляции R т и штукатурной обделки R ш должно быть не менее
R т +R ш =3,23/0,74-1,08=3,28 м 2 ·°С/Вт.
Предварительно (с последующим уточнением) принимаем толщину штукатурной обделки 10 мм, тогда сопротивление ее теплопередаче равно
R ш =0,01/0,15=0,067 м 2 ·°С/Вт.
При использовании для теплоизоляции минераловатных плит производства ЗАО «Минеральная вата» марки Фасад Баттс 0 =145 кг/м 3 , 0 =0,033, W =0,045 Вт/(м·°С) толщина теплоизоляционного слоя составит
δ=0,045·(3,28-0,067)=0,145 м.
Плиты Rockwool выпускаются толщиной от 40 до 160 мм с шагом 10 мм. Принимаем стандартную толщину теплоизоляции 150 мм. Таким образом, укладка плит будет производиться в один слой.
Проверка выполнения требований по энергосбережению. Расчетная схема стены представлена на рис. 1. Характеристика слоев стены и общее сопротивление стены теплопередаче без учета пароизоляции приведены в табл. 2.1.
Таблица 2.1
Характеристика слоев стены и общее сопротивление стены теплопередаче
Материал слоя |
Плотность γ 0 , кг/м 3 |
Толщина δ, м |
Расчетный коэффициент теплопроводности λ W , Вт/(м К) |
Расчетное сопротивление теплопередаче R , м 2 ·°С)/Вт |
|
Внутренняя штукатурка (известково-цементный раствор) |
|||||
Кладка из пустотного керамического кирпича |
|||||
Внешняя штукатурка (цементный раствор) |
|||||
Минераловатный утеплитель ФАСАД БАТТС |
|||||
Штукатурка защитно-декоративная (цементно-перлитовый раствор) |
|||||
Сопротивление теплопередаче стен здания после утепления составит:
R o = 1/8,7+4,32+1/23=4,48 м 2 ·°С/Вт.
С учетом коэффициента теплотехнической однородности наружных стен (r = 0,74) получаем приведенное сопротивление теплопередаче
R o r = 4,48·0,74=3,32 м 2 ·°С/Вт.
Полученное значение R o r = 3,32 превышает нормативное R req =3,23, так как фактическая толщина теплоизоляционных плит больше расчетной. Такое положение отвечает первому требованию СНиП 23-02-2003 к термическому сопротивлению стены – R о ≥R req .
Проверка выполнения требований по санитарно-гигиеническим и комфортным условиям в помещении. Расчетный перепад между температурой внутреннего воздуха и температурой внутренней поверхности стены Δt 0 составляет
Δt 0 =n (t int – t ext )/(R o r ·α int )=1,0(20+29)/(3,32·8,7)=1,7 ºС.
Согласно СНиП 23-02-2003 для наружных стен жилых зданий допустим перепад температуры не более 4,0 ºС. Таким образом, второе условие (Δt 0 ≤Δt n ) выполнено.
П
роверим
третье условие (τ
int
>t
рос),
т.е. возможна ли конденсация влаги на
внутренней поверхности стены при
расчетной температуре наружного воздуха
t
ext
= -29 °С. Температуру
внутренней поверхности τ
int
ограждающей конструкции (без теплопроводного
включения) определяем по формуле
τ int = t int –Δt 0 =20–1,7=18,3 °С.
Упругость водяного пара в помещении е int равна
Цель теплотехнического расчета - вычислить толщину утеплителя при заданной толщине несущей части наружной стены, отвечающей санитарно-гигиеническим требованиям и условиям энергосбережения. Иными словами – у нас есть наружные стены толщиной 640 мм из силикатного кирпича и мы собираемся их утеплить пенополистиролом, но не знаем какой толщины необходимо выбрать утеплитель, чтобы были соблюдены строительные нормы.
Теплотехнический расчет наружной стены здания выполняется в соответствии со СНиП II-3-79 «Строительная теплотехника» и СНиП 23-01-99 «Строительная климатология».
Таблица 1
Теплотехнические показатели используемых строительных материалов (по СНиП II-3-79*)
№ по схеме |
Материал |
Характеристика материала в сухом состоянии |
Расчетные коэффициенты (при условии эксплуатации по приложению 2) СНиП II-3-79* |
||||
Плотность γ 0, кг/м 3 |
Коэффициент теплопроводности λ, Вт/м*°С |
Теплопроводности λ, Вт/м*°С |
Теплоусвоения (при периоде 24 ч) S, м 2 *°С/Вт |
||||
Цементно-песчаный раствор (поз. 71) |
1800 |
0.57 |
0.76 |
0.93 |
11.09 |
||
Кирпичная кладка из сплошного кирпича силикатного (ГОСТ 379-79) на цементно-песчаном растворе (поз. 87) |
1800 |
0.88 |
0.76 |
0.87 |
9.77 |
10.90 |
|
Пенополистирол (ГОСТ 15588-70) (поз. 144) |
0.038 |
0.038 |
0.041 |
0.41 |
0.49 |
||
Цементно-песчаный раствор – тонкослойная штукатурка (поз. 71) |
1800 |
0.57 |
0.76 |
0.93 |
11.09 |
1-штукатурка внутренняя (цементно-песчаный раствор) - 20 мм
2-кирпичная стена (силикатный кирпич) - 640 мм
3-утеплитель (пенополистирол)
4-тонкослойная штукатурка (декоративный слой) - 5 мм
При выполнении теплотехнического расчёта принят нормальный влажностный режим в помещениях - условия эксплуатации («Б») в соответствии с СНиП II-3-79 т.1 и прил. 2, т.е. теплопроводность применяемых материалов берём по графе «Б».
Вычислим требуемое сопротивление теплопередаче ограждения с учетом санитарно-гигиенических и комфортных условий по формуле:
R 0 тр = (t в – t n) * n / Δ t n *α в (1)
где t в – расчётная температура внутреннего воздуха °С, принимаемая в соответствии с ГОСТ 12.1.1.005-88 и нормами проектирования
соответствующих зданий и сооружений, принимаем равной +22 °С для жилых зданий в соответствии с приложением 4 к СНиП 2.08.01-89;
t n – расчётная зимняя температура наружного воздуха, °С, равная средней температуре наиболее холодной пятидневки, обеспеченностью 0,92 по СНиП 23-01-99 для г. Ярославль принимается равной -31°С;
n – коэффициент, принимаемый по СНиП II-3-79* (таблица 3*) в зависимости от положения наружной поверхности ограждающей конструкций по отношению к наружному воздуху и принимается равным n=1;
Δ t n – нормативный и температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции – устанавливается по СНиП II-3-79* (таблица 2*) и принимается равным Δ t n =4,0 °С;
R 0 тр = (22- (-31))*1 / 4,0* 8,7 = 1,52
Определим градусо-сутки отопительного периода по формуле:
ГСОП= (t в – t от.пер)*z от.пер. (2)
где t в - то же, что и в формуле (1);
t от.пер - средняя температура, °С, периода со средней суточной температурой воздуха ниже или равной 8 °С по СНиП 23-01-99;
z от.пер - продолжительность, сут., периода со средней суточной температурой воздуха ниже или равной 8 °С по СНиП 23-01-99;
ГСОП=(22-(-4))*221=5746 °С*сут.
Определим приведенное сопротивление теплопередаче Rо тр по условиям энергосбережения в соответствии с требованиями СНиП II-3-79* (таблица 1б*) и санитарно-гигиенических и комфортных условий. Промежуточные значения определяем интерполяцией.
Таблица 2
Сопротивление теплопередаче ограждающих конструкций (по данным СНиП II-3-79*)
Здания и помещения |
Градусо-сутки отпительного периода, ° С*сут |
Приведенное сопротивление теплопередаче стен, не менее R 0 тр (м 2 *°С)/Вт |
Общественные административные и бытовые, за исключением помещений с влажным или мокрым режимом |
5746 |
3,41 |
Сопротивление теплопередаче ограждающих конструкций R(0) принимаем как наибольшее из значений вычисленных ранее:
R 0 тр = 1,52< R 0 тр = 3,41, следовательно R 0 тр = 3,41 (м 2 *°С)/Вт = R 0 .
Запишем уравнение для вычисления фактического сопротивления теплопередаче R 0 ограждающей конструкции с использованием формулы в соответствии с заданной расчетной схемой и определим толщину δ x расчётного слоя ограждения из условия:
R 0 = 1/α н + Σδ i/ λ i + δ x/ λ x + 1/α в = R 0
где δ i – толщина отдельных слоёв ограждения кроме расчётного в м;
λ i – коэффициенты теплопроводности отдельных слоев ограждения (кроме расчётного слоя) в (Вт/м*°С) принимаются по СНиП II-3-79* (приложение 3*) – для этого расчёта таблица 1;
δ x – толщина расчётного слоя наружного ограждения в м;
λ x – коэффициент теплопроводности расчётного слоя наружного ограждения в (Вт/м*°С) принимаются по СНиП II-3-79* (приложение 3*) – для этого расчёта таблица 1;
α в - коэффициент теплоотдачи внутренней поверхности ограждающих конструкций принимается по по СНиП II-3-79* (таблица 4*) и принимается равным α в = 8,7 Вт/м 2 *°С.
α н - коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающей конструкции принимается по по СНиП II-3-79* (таблица 6*) и принимается равным α н = 23 Вт/м 2 *°С.
Термическое сопротивление ограждающей конструкции с последовательно расположенными однородными слоями следует определять как сумму термических сопротивлений отдельных слоев.
Для наружных стен и перекрытий толщина теплоизоляционного слоя ограждения δ x рассчитывается из условия, что величина фактического приведённого сопротивления теплопередаче ограждающей конструкции R 0 должна быть не менее нормируемого значения R 0 тр , вычисленного по формуле (2):
R 0 ≥ R 0 тр
Раскрывая значение R 0 , получим:
R 0 = 1/ 23 + (0,02/ 0,93 + 0,64/ 0,87 + 0,005/ 0,93) + δ x / 0,041 + 1/ 8,7
Исходя из этого, определяем минимальное значение толщины теплоизоляционного слоя
δ x = 0,041*(3,41- 0,115 - 0,022 - 0,74 - 0,005 - 0,043)
δ x = 0,10 м
Принимаем в расчёт толщину утеплителя (пенополистирол) δ x = 0,10 м
Определяем фактическое сопротивление теплопередаче рассчитываемых ограждающих конструкций R 0 , с учётом принятой толщины теплоизоляционного слоя δ x = 0,10 м
R 0 = 1/ 23 + (0,02/ 0,93 + 0,64/ 0,87 + 0,005/ 0,93 + 0,1/ 0,041) + 1/ 8,7
R 0 = 3,43 (м 2 *°С)/Вт
Условие R 0 ≥ R 0 тр соблюдается, R 0 = 3,43 (м 2 *°С)/Вт ≥ R 0 тр =3,41 (м 2 *°С)/Вт