Прокаливание. Задача С2 на ЕГЭ по химии

«Вещество и энергия» - Углеводы. Сохраним нашу природу. Зачем животные едят? Составьте пищевую сеть. Признаки живого организма. Семья синиц за лето съедает 35 тыс. гусениц. Кислород. Не нравилось старику, как ухала и вздыхала Сова. Гриф. Замолкнут сразу дятла стук И птичьи голоса. Составьте пищевую цепь. Трава. Жиры. Холоднокровные.

«Свойства живого вещества» - Рефлексия: Уровни организации жизни: Критерии жизни: Изучение новой темы. Почему существует множество понятий «ЖИЗНЬ», но нет ни одного краткого и общепринятого? Как проявляются свойства живого на различных уровнях организации? Выделите основные признаки понятия «Биологическая система». Организационный момент.

«Количество вещества» - Молярная масса численно равна относительной молекулярной массе вещества. Сколько структурных единиц содержится в 1 моле? Эпиграф. 1. В мерный цилиндр отмерьте 12 столовых ложек воды. Измеряется г\моль. Показывает массу в 1 моль вещества. Урок - исследование: «Количество вещества. Имеет числовое значение 6,02 · 1023.

«Вещество» - В настоящее время известно чуть более ста видов атомов. А если облаков нет, а светит Солнце? Сделайте соответствующие выводы. Проведение. По словарю найдите толкование понятия «экстракция». Аналогично (о с т о р о ж но!) проведите выпаривание 3–4 мл раствора сахара. На Земле с физическими веществами вы практически никогда не сталкиваетесь.

«Вещество в химии» - Газообразные вещества. Химические. Ацетон. Углекислый газ. Способность реагировать с другими веществами. Физические. Подберите нужное слово. Свойства веществ. Простые вещества. Жидкие вещества. Сложные вещества. Вода. Кислород. Сегодня мы начинаем изучать одну из самых древних из важных наук- химию.

«Классификация веществ» - Классификация веществ. Кислотным. Гидроксидом не является: Исключите лишнее по классификационной характеристике вещество. Массовые доли элементов в соединении равны: калия – 43,1%, хлора – 39,2%,кислорода – 17,7%. Простые вещества-металлы. Распределите вещества. Серебро. Металлы и неметаллы. Углерод.

Для полного удаления летучих веществ, получаемых в результате термического разложения, приме­няют прокаливание, которое можно проводить при помощи пламени газовой горелки, в муфельных или тигельных печах. Для прокаливания в пламени горелки вещество помещают в металлический или фарфоровый тигель. Затем его вставляют в фарфоровый треугольник так, чтобы он входил в треуголь­ник на 2/3 своей высоты. Фарфоровый треугольник кладут на кольцо штатива. Прокаливание ведут в вытяжном шкафу.

Муфельные печи применяют для прокаливания веществ при повышенных температурах (до 1600 °С). В рабочем про­странстве печи нельзя разливать реактивы. Раскаленные тиг­ли извлекают из муфельной печи длинными тигельными щипцами.

Фильтрование

Это процесс движения через пористую пе­регородку жидкости или газа, который сопровождается осаж­дением на пористой перегородке взвешенных в них твердых

частиц. Эффективность процесса фильтрования оценивается ско­ростью и полнотой отделения твердых частиц от жидкости или газа. На него оказывают влияние: вязкость (легче фильт­руются жидкости, имеющие малую вязкость), температура (чем выше температура, тем легче фильтруется раствор, так как вязкость жидкости уменьшается при нагревании), давле­ние (чем больше разность давлений по обе стороны фильтра, тем выше скорость фильтрования), размер и характер частиц твердого вещества (чем больше размер частиц по сравнению с размером пор фильтра, тем быстрее и легче идет фильтрова­ние).

В качестве фильтрующих материалов применяют различ­ные органические и неорганические вещества. Необходимо помнить, что для фильтрования нельзя использовать матери­алы, каким-либо образом взаимодействующие с фильтруемой жидкостью. Например, щелочи, особенно концентрирован­ные, нельзя фильтровать через фильтр из прессованного стек­ла и других материалов, содержащих диоксид кремния, так как SiO 2 растворяется в щелочах. Фильтрующие материалы могут быть: волокнистыми (вата, шерсть, различные ткани, синтетические волокна), зернистыми (кварцевый песок), по­ристыми (бумага, керамика). Выбор фильтрующего матери­ала зависит от требований к чистоте раствора, а также от его свойств.

Фильтрование можно проводить различными способами: в обычных условиях, при нагревании, под вакуумом. При обычных условиях для фильтрования применяют стеклянные воронки. Внутрь воронки помещают какой-либо фильтрую­щий материал, например вату, фильтровальную бумагу. Из фильтровальной бумаги делают простые или складчатые фильтры.

Для приготовления простого фильтра берут лист фильтро­вальной бумаги квадратной формы. Складывают сначала вдвое, затем еще раз, как показано на рисунке а:

Полу­чается уменьшенный в 4 раза квадрат. Угол сложенного квад­рата обрезают ножницами по дуге. Отделяют пальцем один слой бумаги от трех остальных и расправляют.

Для приготовления складчатого фильтра поступают вна­чале так же, как при изготовлении простого, затем складыва­ют его пополам и каждую половину сгибают несколько раз в одну и другую сторону подобно гармошке (рис. б). Верх­ний край фильтра не должен доходить до края воронки на 5 мм. Правильно уложенный в воронку фильтр смачивают фильтруемой жидкостью или дистиллированной водой.

Жидкость сливают по стеклянной палочке, прижав ее к стенке воронки. Если требуется отфильтро­вать горячий раствор, то применяют специальную воронку для горячего фильтрования с электрическим или водяным обогревом.

Фильтрование при пониженном давлении (под вакуумом) позволяет достигнуть более полного отделения твердого веще­ства от ж
идкости и увеличить скорость процесса. Для этого собирают прибор, состоящий из устройства для фильтрования - воронка Бюхнера (1), соединенная с колбой Бунзена (2), колба Бюхнера посредством резинового шланга подсоединяется к насосу. Размер воронки Бюхнера должен соответствовать массе осадка, но не жидкости. На сетчатое дно воронки Бюхнера кладут два кру­жочка фильтровальной бумаги, смачивают их дистиллирован­ной водой, присоединяют прибор к насосу, добившись плотно­го прилегания фильтра к сетке воронки. Начинают процесс фильтрования. Сначала сливают большую часть жидкости на фильтр, затем оставшуюся жидкость взбалтывают с осадком и выливают смесь в воронку. При фильтровании осадок не дол­жен переполнять воронку, а фильтрат в колбе Бунзена не дол­жен доходить до отростка, соединяющего колбу с предохрани­тельной склянкой. По окончании фильтрования сначала отключают насос, затем воронку вынимают из колбы, выбирают осадок на лист фильтровальной бумаги.

Данный урок представляет собой практическое занятие, в ходе которого проводятся различные опыты, представляющие собой как физические, так и химические процессы. Проведенным химическим реакциям даются характеристики с указанием условий начала и протекания реакций, а также их признаков.

Тема: Первоначальные химические представления

Урок: Практическое занятие 3. Химические реакции

ОПЫТ 1.

Кусочек парафина помещаем на металлическую пластинку и нагреваем. В результате мы наблюдаем изменение агрегатного состояния парафина (переход в жидкое состояние). Несмотря на то, что расплавленный парафин стал бесцветным (изменился цвет), это явление относится к физическим, т.к. состав вещества остался прежним, изменилось только его агрегатное состояние.

Рис. 1. Плавление парафина

ОПЫТ 2.

Зажжем свечу и дадим ей немного погореть. В процессе горения свечи сгорает фитиль и парафин, часть парафина плавится, нагреваясь от тепла, выделяемого в процессе горения. Горение фитиля и парафина – это химические процессы, т.к. исходные вещества превращаются в новые продукты реакции. Эти продукты – газообразные, т.к. свеча уменьшается в размерах. Горение сопровождается выделением тепла и света.

Плавление парафина, как было сказано выше, относится к физическим явлениям. Охарактеризуем процесс горения свечи. Условиями начала реакции является поджог и соприкосновение фитиля с воздухом. Условие течения реакции – приток свежего воздуха (если его прекратить, свеча погаснет). Признаки реакции – выделение тепла и света.

2. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

с.14-15 №№ 9, 10 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.

Условие задачи С2 на ЕГЭ по химии - это текст, описывающий последовательность экспериментальных действий. Данный текст нужно превратить в уравнения реакций.

Трудность такого задания в том, что школьники слабо представляют себе экспериментальную, не "бумажную" химию. Не все понимают используемые термины и протекающие процессы. Попробуем разобраться.

Очень часто понятия, которые химику кажутся совершенно ясными, абитуриентами воспринимаются неправильно. Вот кратких словарь таких понятий.

Словарь непонятных терминов.

  1. Навеска - это просто некоторая порция вещества определенной массы (её взвесили на весах ). Она не имеет отношения к навесу над крыльцом:-)
  2. Прокалить - нагреть вещество до высокой температуры и греть до окончания химических реакций. Это не «смешивание с калием» и не «прокалывание гвоздём».
  3. «Взорвали смесь газов» - это значит, что вещества прореагировали со взрывом. Обычно для этого используют электрическую искру. Колба или сосуд при этом не взрываются !
  4. Отфильтровать - отделить осадок от раствора.
  5. Профильтровать - пропустить раствор через фильтр, чтобы отделить осадок.
  6. Фильтрат - это профильтрованный раствор .
  7. Растворение вещества - это переход вещества в раствор. Оно может происходить без химических реакций (например, при растворении в воде поваренной соли NaCl получается раствор поваренной же соли NaCl, а не щелочь и кислота отдельно), либо в процессе растворения вещество реагирует с водой и образует раствор другого вещества (при растворении оксида бария получится раствор гидроксида бария). Растворять можно вещества не только в воде, но и в кислотах, в щелочах и т.д.
  8. Выпаривание - это удаление из раствора воды и летучих веществ без разложения содержащихся в растворе твёрдых веществ.
  9. Упаривание - это просто уменьшение массы воды в растворе с помощью кипячения.
  10. Сплавление - это совместное нагревание двух или более твёрдых веществ до температуры, когда начинается их плавление и взаимодействие. С плаванием по реке ничего общего не имеет:-)
  11. Осадок и остаток.
    Очень часто путают эти термины. Хотя это совершенно разные понятия.
    «Реакция протекает с выделением осадка» - это означает, что одно из веществ, получающихся в реакции, малорастворимо. Такие вещества выпадают на дно реакционного сосуда (пробирки или колбы).
    «Остаток» - это вещество, которое осталось , не истратилось полностью или вообще не прореагировало. Например, если смесь нескольких металлов обработали кислотой, а один из металлов не прореагировал - его могут назвать остатком .
  12. Насыщенный раствор - это раствор, в котором при данной температуре концентрация вещества максимально возможная и больше уже не растворяется.

    Ненасыщенный раствор - это раствор, концентрация вещества в котором не является максимально возможной, в таком растворе можно дополнительно растворить ещё какое-то количество данного вещества, до тех пор, пока он не станет насыщенным.

    Разбавленный и «очень» разбавленный раствор - это весьма условные понятия, скорее качественные, чем количественные. Подразумевается, что концентрация вещества невелика.

    Для кислот и щелочей также используют термин «концентрированный» раствор. Это тоже характеристика условная. Например, концентрированная соляная кислота имеет концентрацию всего около 40%. А концентрированная серная - это безводная, 100%-ная кислота.

Для того, чтобы решать такие задачи, надо чётко знать свойства большинства металлов, неметаллов и их соединений: оксидов, гидроксидов, солей. Необходимо повторить свойства азотной и серной кислот, перманганата и дихромата калия, окислительно-восстановительные свойства различных соединений, электролиз растворов и расплавов различных веществ, реакции разложения соединений разных классов, амфотерность, гидролиз солей и других соединений, взаимный гидролиз двух солей.

Кроме того, необходимо иметь представление о цвете и агрегатном состоянии большинства изучаемых веществ - металлов, неметаллов, оксидов, солей.

Именно поэтому мы разбираем этот вид заданий в самом конце изучения общей и неорганической химии.
Рассмотрим несколько примеров подобных заданий.

    Пример 1: Продукт взаимодействия лития с азотом обработали водой. Полученный газ пропустили через раствор серной кислоты до прекращения химических реакций. Полученный раствор обработали хлоридом бария. Раствор профильтровали, а фильтрат смешали с раствором нитрита натрия и нагрели.

Решение:

    Пример 2: Навеску алюминия растворили в разбавленной азотной кислоте, при этом выделялось газообразное простое вещество. К полученному раствору добавили карбонат натрия до полного прекращения выделения газа. Выпавший осадок отфильтровали и прокалили , фильтрат упарили , полученный твёрдый остаток сплавили с хлоридом аммония. Выделившийся газ смешали с аммиаком и нагрели полученную смесь.

Решение:

    Пример 3: Оксид алюминия сплавили с карбонатом натрия, полученное твёрдое вещество растворили в воде. Через полученный раствор пропускали сернистый газ до полного прекращения взаимодействия. Выпавший осадок отфильтровали, а к профильтрованному раствору прибавили бромную воду. Полученный раствор нейтрализовали гидроксидом натрия.

Решение:

    Пример 4: Сульфид цинка обработали раствором соляной кислоты, полученный газ пропустили через избыток раствора гидроксида натрия, затем добавили раствор хлорида железа (II). Полученный осадок подвергли обжигу. Полученный газ смешали с кислородом и пропустили над катализатором.

Решение:

    Пример 5: Оксид кремния прокалили с большим избытком магния. Полученную смесь веществ обработали водой. При этом выделился газ, который сожгли в кислороде. Твёрдый продукт сжигания растворили в концентрированном растворе гидроксида цезия. К полученному раствору добавили соляную кислоту.

Решение:

Задания С2 из вариантов ЕГЭ по химии для самостоятельной работы.

  1. Нитрат меди прокалили, полученный твёрдый осадок растворили в серной кислоте. Через раствор пропустили сероводород, полученный чёрный осадок подвергли обжигу, а твёрдый остаток растворили при нагревании в концентрированной азотной кислоте.
  2. Фосфат кальция сплавили с углём и песком, затем полученное простое вещество сожгли в избытке кислорода, продукт сжигания растворили в избытке едкого натра. К полученному раствору прилили раствор хлорида бария. Полученный осадок обработали избытком фосфорной кислоты.
  3. Медь растворили в концентрированной азотной кислоте, полученный газ смешали с кислородом и растворили в воде. В полученном растворе растворили оксид цинка, затем к раствору прибавили большой избыток раствора гидроксида натрия.
  4. На сухой хлорид натрия подействовали концентрированной серной кислотой при слабом нагревании, образующийся газ пропустили в раствор гидроксида бария. К полученному раствору прилили раствор сульфата калия. Полученный осадок сплавили с углем. Полученное вещество обработали соляной кислотой.
  5. Навеску сульфида алюминия обработали соляной кислотой. При этом выделился газ и образовался бесцветный раствор. К полученному раствору добавили раствор аммиака, а газ пропустили через раствор нитрата свинца. Полученный при этом осадок обработали раствором пероксида водорода.
  6. Порошок алюминия смешали с порошком серы, смесь нагрели, полученное вещество обработали водой, при этом выделился газ и образовался осадок, к которому добавили избыток раствора гидроксида калия до полного растворения. Этот раствор выпарили и прокалили. К полученному твёрдому веществу добавили избыток раствора соляной кислоты.
  7. Раствор иодида калия обработали раствором хлора. Полученный осадок обработали раствором сульфита натрия. К полученному раствору прибавили сначала раствор хлорида бария, а после отделения осадка - добавили раствор нитрата серебра.
  8. Серо-зелёный порошок оксида хрома (III) сплавили с избытком щёлочи, полученное вещество растворили в воде, при этом получился тёмно-зелёный раствор. К полученному щелочному раствору прибавили пероксид водорода. Получился раствор желтого цвета, который при добавлении серной кислоты приобретает оранжевый цвет. При пропускании сероводорода через полученный подкисленный оранжевый раствор он мутнеет и вновь становится зелёным.
  9. (МИОО 2011, тренинговая работа) Алюминий растворили в концентрированном растворе гидроксида калия. Через полученный раствор пропускали углекислый газ до прекращения выделения осадка. Осадок отфильтровали и прокалили. Полученный твердый остаток сплавили с карбонатом натрия.
  10. (МИОО 2011, тренинговая работа) Кремний растворили в концентрированном растворе гидроксида калия. К полученному раствору добавили избыток соляной кислоты. Помутневший раствор нагрели. Выделившийся осадок отфильтровали и прокалили с карбонатом кальция. Напишите уравнения описанных реакций.

Ответы к заданиям для самостоятельного решения:

  1. или
  2. Прокаливание сухого остатка позволяет определить примерное соотношение минеральной и органической частей загрязнений. Отношение веса золы к весу сухого остатка называется зольностью сухого остатка и выражается в процентах.[ ...]

    Прокаливание представляет собой сжигание отходов, осуществляемое с целью уменьшения объема и массы реагирующих компонентов. Однако в процессе прокаливания образуются отходы (зола и шлак, дымовые газы, летучая зола и сточные воды, образующиеся при обработке золы и очистке дымовых газов), которые вредно воздействуют на окружающую среду. Поэтому прокаливание не является лучшим способом ликвидации твердых органических отходов.[ ...]

    Прокаливание является третьей, весьма важной операцией в производстве ТЮ2, так как именно при прокаливании продукт приобретает необходимые пигментные свойства. При прокаливании, вследствие разложения основных сульфатов титана, происходит удаление из метатитановой кислоты воды и Э03. Практикой установлено, что некоторые продукты с малым содержанием БОз труднее его выделяют, чем ТЮ304, а в присутствии примесей, например К2504, удаление БОз облегчается и начинается уже при 480°.[ ...]

    При прокаливании шихты необходимо точно соблюдать температурный режим процесса, так как при повышении температуры до 750-800° на поверхности плава начинают появляться коричневые и даже черные, так называемые «ржавые пятна». При дальнейшем повышении температуры эти пятна распространяются по всей поверхности, а затем и по всей массе плава. При недостатке в шихте борной кислоты или при плохом ее перемешивании с хромпиком на плаве также могут образоваться бурые участки, но они состоят из неразложенного хромпика, хорошо растворимы в воде и не идентичны с «ржавыми пятнами», появляющимися в результате разложения плава. По окончании прокаливания плав выгружают из печи на железные противни, на которых он охлаждается. Шихту загружают в печь очень небольшими количествами, вследствие ее сильного вспучивания во время прокаливания. Так, например, в электропечь с поверхностью пода 0,5 м2 удается загрузить только 10-15 кг шихты, из которой получается 1,5-2,5 кг готового пигмента. Прокаливание шихты изумрудной зелени продолжается 1,5-2 часа.[ ...]

    При прокаливании пустого мембранного фильтра получается так мало золы, что ею при расчете можно пренебречь.[ ...]

    Температура прокаливания 500-600°. Цвет пигмента устанавливается при этой температуре через 20-30 минут, но на практике продолжительность прокаливания доходи г до 2 часов, так как при меньшей продолжительности в пигменте остаются неразрушенные примеси.[ ...]

    Остаток после прокаливания. Для определения остатка после прокаливания грубодисперсных примесей («прокаленных грубодисперсных примесей») взвешенный мембранный фильтр бе ут тигельными щипцами или пинцетом и очень осторожно сжигают над фарфоровым тиглем, предварительно прокаленным и взвешенным.[ ...]

    Остаток после прокаливания. Прокаливать фарфоровый или кварцевый тигель с отфильтрованными грубодисперсными примесями рекомендуется в электрической муфельной печи при 600 °С в течение 10-15 мин. Содержание остатка после прокаливания вычисляют по формуле, приведенной в разделе «А» (см. стр. 20).[ ...]

    Остаток после прокаливания определяют, как описано в разделе «А» (см. стр. 20).[ ...]

    Условия осаждения и прокаливания оказывают большое влияние на пигментные свойства сернистого кадмия, т. е. на его цвет, укрывистость, интенсивность, устойчивость и т. д.[ ...]

    Сухой остаток и потери при прокаливании. В практике водо-подготовки под сухим остатком понимают общую сумму неорганических и органических соединений в растворенном и коллоидно растворенном состоянии. Сухой остаток определяют выпариванием предварительно профильтрованной пробы с последующим высушиванием при 10 °С. Потери при прокаливании определяют содержание в сухом остатке органических веществ. Остаток после прокаливания характеризует солесодержание воды.[ ...]

    Сущность процесса сводится к прокаливанию при 1400-1450° апатита (с добавлением 2-8% кремнезема) или кара-таузского фосфорита (с прибавлением извести) в присутствии водяных паров. В этих условиях разрушается кристаллическая решетка апатита и фтор удаляется на 90%. Получаются различного состава фосфаты, растворимые в слабых кислотах. При переработке апатита удобрение содержит 30-32% Р205, при прокаливании фосфорита - 20-22%; 70-92% этих фосфатов растворимы в 2%-ной лимонной кислоте. Установлено, что в равных дозах по Р2Ой суперфосфат и обесфторенный фосфат при основном внесении дают близкий эффект. Обесфторенный фосфат применяется и для минеральной подкормки животных.[ ...]

    Зольность определяется сжиганием й прокаливанием фильтра с осядкои после определения концентрации активного ила. Разница между весом сухого вещества активкогв ила и весом золы характеризует органическую часть активного ила - потерю пра прокаливании.[ ...]

    Смесь из 60% СоО и 40% ZnO почти вся после прокаливания состоит из соединения ZnCo204. При меньшем содержании кобальта образуются темнозеленые продукты, являющиеся смесью ZnCo204 с окисью цинка.[ ...]

    Различают общий сухой остаток и остаток после прокаливания. Под понятием «общий сухой остаток» подразумевают количество вещества, оставшееся после выпаривания пробы сточных вод и сушки до постоянной массы. Количество вещества, полученное после прокаливания сухого остатка, называется «остатком после прокаливания». По уменьшению массы сухого остатка после прокаливания можно судить о содержании органических веществ в сточных водах. Сукой остаток определяют,по стандарту PN-59/Z-04519.[ ...]

    Механизм процесса образования красного кадмия при прокаливании смеси серы, селена и соли кадмия вероятно следующий: при 250-300° происходит диссоциация углекислого или щавелевокислого кадмия на углекислый газ и окись кадмия. Последняя образуется при этом в очень активном, реакционноспособном состоянии и сразу же вступает во взаимодействие с серой и селеном, образуя красную массу с сильным коричневым оттенком. Эта масса содержит определенное количество сернистого и селенистого кадмия в виде их смеси (Сс1 4- С [ ...]

    Чернями называют продукты, полученные в результате прокаливания без доступа воздуха различных органических веществ животного и растительного происхождения.[ ...]

    Содержание летучих твердых частиц определяют путем прокаливания остатка при температуре 550°С в электрической муфельной печи. Остаток питьевой и природной воды, а также ил прокаливают в течение 1 ч, а для остатков проб сточной воды требуется только 20-минутное прокаливание. Потеря массы при прокаливании выражается в мг летучих веществ на 1 л, и остаток после прокаливания называют нелетучими твердыми частицами. Чашка для выпаривания, используемая при анализе на содержание летучих твердых частиц, и фильтровальный диск из стекловолокна должны быть подвергнуты предварительной обработке путем прокаливания в муфельной печи для определения точной первоначальной собственной массы. Летучие твердые частицы в сточных водах часто интерпретируют как меру содержания органических веществ. Однако это не совсем точно, так как при сгорании многих органических веществ образуется зола, а многие неорганические соли улетучиваются в процессе прокаливания.[ ...]

    Технологический процесс получения красной окиси железа прокаливанием гидрата окиси или закись-окиси железа состоит из следующих операций: приготовления гидрата окиси или закись-окиси железа, промывки, фильтрования и сушки полученного гидрата и, наконец, прокаливания сухого или влажного осадка при 600-700°.[ ...]

    Внутренний диаметр реторты 2,7 м, полезная высота (зона сушки, прокаливания и охлаждения угля) 15,1 м. Общая высота реторты 26 м.[ ...]

    Сухой остаток общий также минерального происхождения, потеря при прокаливании составляет 8%. Концентрация хлоридов и сульфатов относительно невелика, но концентрация солей кремневой кислоты весьма значительна (-300 мг!л) за счет применяемого в качестве флотореагента жидкого стекла. Цианиды, медь и мышьяк содержатся в незначительных количествах. Весьма существенным загрязнением являются используемые при флотации органические реагенты: нефтепродукты, терпинеол, ксантогенат (или дитиофосфат), которые повышают окисляемость воды более чем до 100 мг/л О.[ ...]

    Будников и Гулинова для выявления зависимости активности каолина от температуры его прокаливания измеряли теплоту взаимодействия его с гидратом окиси кальция. Они установили, что предельной температурой прокаливания, выше которой активность каолина падает, является температура порядка 800°. Практика ультрамаринового производства также подтверждает, что каолины, прокаленные при температуре выше 800°, труднее вступают в реакцию ультрамаринообразования.[ ...]

    Процесс изготовления желтого кадмия по этому методу состоит из следующих операций: приготовления и прокаливания шихты, промывки, сушки, размола и просеивания пигмента.[ ...]

    Воды мутные, желтоватого цвета, с pH от 6,7 До 9,5. Потеря грубодисперсных примесей и сухого остатка общего при прокаливании ничтожно мала, что свидетельствует о преобладании в их составе минеральных веществ (частиц руды). Основой растворенных минеральных солей общего стока являются сульфаты. При прохождении сточных вод через хвостохранилище количество грубодисперсных примесей резко снижается.[ ...]

    Наиболее старый метод определения общего содержания органических примесей состоит в определении потери при прокаливании. Прокаливанием при 110°С остатка, полученного после выпаривания пробы, можно обнаружить многие органические вещества (углеводы, белковые соединения) по темной окраске остатка и обугливанию его. Потеря при прокаливании дает также указание на присутствие некоторых неорганических веществ.[ ...]

    Сернистый кадмий, образовавшийся при осаждении гипосульфитом, обладает среднежелтым цветом с очень живым и ярким оттенком. При прокаливании пигмента до 500° его цвет не изменяется, а при 550-600° становится несколько светлее.[ ...]

    Осадок прокаливают в муфельной печи при.температуре 700-750°С, при температуре, выше 800° осадок разлагается на ВаО и о03. Продолжительность первого прокаливания - 30 мин., повторного - 20 мин.[ ...]

    Из всех сорбентов лучшим является активированная окись алюминия. Ее изготовляют из товарной окиси алюминия. Этот реагент активируется двойным прокаливанием при 800° С с промежуточным охлаждением и смачиванием 15%-ным раствором соды. Высота слоя сорбента в фильтре должна быть около 2 м. Рабочая обменная емкость его (по данным Водгео) 1,25 кг фтора на 1 м3 сорбента.[ ...]

    При прокаливании шлама при температуре обжига плиток, т. е. при 900 °С, обнаружены дифракционные максимумы, которые можно отнести к Ре304. Отработанный активный ил содержит гидроксиды железа и никеля, после прокаливания появились отражения, которые можно идентифицировать как М1ре204 - никелевую шпинель.[ ...]

    После сушки выпавшей взвеси при температуре 105 °С и взвешивания определяют содержание (в мг/л) осевших веществ. Отношение массы оставшейся золы после прокаливания сухого осадка при температуре 600° С к общей массе абсолютно сухого осадка (в %) называется зольностью последнего. Потеря сгоревших веществ при прокаливании определяет количество без-зольного вещества.[ ...]

    Из описанных методов производства желтого кадмия наибольшее практическое применение имеют: взаимодействие углекислого кадмия с сернистым натрием, прокаливание углекислого кадмия с серой и взаимодействие соли кадмия с гипосульфитом. При работе по этим методам можно получать желтый кадмий всех оттенков - от лимонного до оранжевого. Оранжевый кадмий образуется также при прокаливании углекислого кадмия со смесью серы и селена. Этот метод описан ниже. Осаждение желтого кадмия производят в деревянных, фарфоровых или эмалированных баках, прокаливание - в муфельных или во вращающихся печах.[ ...]

    Некоторые из таких содержащихся в пигменте водорастворимых солей могут даже сами быть причиной ускоренной коррозии. Так, например, марс, изготовленный прокаливанием железного купороса, может содержать незначительные количества не-прокаленного купороса, который является очень сильным корродирующим агентом. Поэтому до применения необходимо проверять химический состав марсов и, в частности, содержание в них железного купороса, хотя такой анализ и не дает возможности судить о других свойствах этого пигмента, например, об укрывистости и др. Химический состав пигментов важно, однако, знать не только для суждения о качестве пигментов и о прочности и долговечности приготовленных из них пленок, но и потому, что некоторые вещества, входящие в состав пигментов, оказывают вредное действие на человеческий организм.[ ...]

    Применение экстракции для регенерации нефтешлама показало, что влажность полученного осадка колеблется в пределах 65-75%. При обезвреживании этого осадка прокаливанием в барабанных печах требуются затраты тепла, практически равные теплу, которое можно получить из нефтепродукта, выделенного из нефтешлама. Поэтому утилизация нефтепродуктов из нефтешлама в данном случае является нерентабельной.[ ...]

    Таким образом при получении сернистого кадмия может изменяться очень большое количество факторов, а именно: исходные соли кадмия и сульфида, условия осаждения и прокаливания и т. д., вследствие чего возможно существование очень большого количества способов получения сернистого кадмия определенного цвета и свойств. И, действительно, в разное время было предложено очень много способов для получения сернистого кадмия, пригодного для применения в качестве пигмента.[ ...]

    Ход определения. В такую же пробирку, какие применялись при изготовлении шкалы, наливают 10 мл исследуемой воды, взятой или непосредственно, или после выпаривания ее, прокаливания сухого остатка, растворения его в воде, нейтрализации азотной кислотой по фенолфталеину и разбавления до определенного объема (см. предыдущий метод). Прибавляют 1,00 мл раствора нитрата ртути(П) и 2 капли раствора дифенилкарб-азида. Через 10-15 мин полученную окраску сравнивают с окрасками растворов шкалы, рассматривая растворы сверху.[ ...]

    Первое сообщение о железной лазури было сделано в 1710 г., но оно не содержало данных о способе его производства. Способ получения железной лазури был опубликован лишь в 1724 г. и заключался в прокаливании бычьей крови с поташом и осаждении подкисленной водной вытяжки этого плава железным купоросом и квасцами. Позже (в 1735 г.) было установлено, что вместо крови можно применять другие вещества животного происхождения - рог, когти, волос, кожу и др.[ ...]

    Химическое загрязнение определяется химическим анализом сточных вод, устанавливающим температуру, цвет, запах, прозрачность, осадок по объему и весу, взвешенные вещества по весу и потери при прокаливании их, плотный остаток при прокаливании, окисляемость, химическую потребность в кислороде (ХПК), биохимическую потребность в кислороде (БПК), азот общих и аммонийных солей, реакцию среды pH, кислотность и щелочность, хлориды, фосфаты, сульфаты, концентрацию солей кислот, фенолы, цианиды, родониды, соли тяжелых металлов и другие химические примеси.[ ...]

    Как можно видеть из приведенных данных, основными загрязнениями сточных вод молибдено-вольфрамовых обогатительных фабрик являются грубодисперсные примеси минерального происхождения, так как потеря при прокаливании составляет только 4,5% общего количества. При прохождении через хвостохранилище концентрация примесей в общем стоке снижается лишь на 70%, т. е. вода осветляется плохо и прозрачность повышается лишь до 2,1 см.[ ...]

    В процессе умягчения воды осаждением получается 200 т шлама с удельным весом 1,5, причем 15% (по массе) шлама состоит из твердых частиц, которые представляют собой соли кальция и магния. Так как кальциевые соли при прокаливании образуют окись кальция, которая может быть использована в процессе умягчения воды, то предварительно уплотненный шлам направляется в печь. При этом в процессе уплотнения (центрифугирования) отделяется 70% твердого материала шлама, уплотненный шлам - фугат - содержит 65% (по массе) твердого материала.[ ...]

    Проведенные исследования показывают,что нефтяные коксы являются достаточно реакционноспособными по отношению к кислороду воздуха даже при умеренных температурах реагирования (520°С) вплоть до температур предварительного прокаливания 800-1200°С. При температурах окисления выше 540°С (см.табл.I) происходит воспламенение прокаленного кокса и процесс из кинетической области реагирования переходит в диффузионную область, где сжигание кокса определяется подводом кислорода. Отсюда следует вывод,что сжигание коксовой пыли необходимо осуществлять при температурах выше 550+600°С.[ ...]

    Одним из возможных решений проблемы является разработанный в нашей стране химико-металлургический метод, по которому получаются два продукта монохромата натрия и феррохром, как продукт металлургии. Монохромат натрия получается при прокаливании шихты, состоящей из хромовой руды, кальцинированной соды и твердого остатка (без доломита). После прокаливания спек подвергают выщелачиванию, в результате которого образуется раствор монохромата натрия и твердый остаток в виде гранул, содержащих 30-35% окиси хрома.[ ...]

    Цвет сернистого кадмия, получаемого по этому методу, золотисто-желтый. Сернистый кадмий иных оттенков, а именно; лимонного, светложелтого и оранжевого - по этому методу получить не удается, так как изменение соотношения между реагентами, а также и условий прокаливания не влияет на цвет сернистого кадмия.[ ...]

    Сточные воды гравитационных обогатительных фабрик, в технологическом процессе которых не применяют флотореагенты, загрязнены грубодисперсными примесями (хвосты флотации, шла-мы, пески), состоящими из пустой породы, сопровождающей флотируемые минералы. Потеря при прокаливании грубодисперсных примесей гравитационных фабрик составляет 2,5% их общего количества.[ ...]

    При периодическом процессе плохо используется тепло греющего теплоносителя во второй половине оборота реторты. Этого можно избежать при устройстве вертикальной непрерывнодействующей реторты, в которой свежие дрова подаются на верх реторты и, двигаясь сверху вниз под влиянием собственного веса, встречаются с парогазами все более высокой температуры. При этом сырье постепенно проходит зоны сушки, сухой перегонки, прокаливания угля и его охлаждения.

Для любых предложений по сайту: [email protected]